mir.pe (일반/어두운 화면)
최근 수정 시각 : 2022-06-16 10:58:03

거리의 사다리

천문학
Astronomy
{{{#!wiki style="margin:0 -10px -5px; min-height:2em; word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=MidnightBlue><colcolor=#fff>배경
기본 정보 우주 · 천체
천문사 고천문학 · 천동설 · 지동설 · 첨성대 · 혼천의 · 간의 · 아스트롤라베 · 올베르스의 역설 · 대논쟁 · 정적 우주론 · 정상우주론
학술적 정보 천문학과 · 천문학자 · 우주덕 · 천문법 · 국제천문연맹 · 한국천문학회 · 한국우주과학회 · 한국아마추어천문학회( 천문지도사) · 한국천문연구원 · 한국항공우주연구원 · 한국과학우주청소년단 · 국제천문올림피아드 · 국제 천문 및 천체물리 올림피아드 · 아시아-태평양 천문올림피아드 · 한국천문올림피아드 · 전국학생천체관측대회 · 전국청소년천체관측대회
위치천문학
구면천문학 천구 좌표계 · 구면삼각형 · 천구적도 · 자오선 · 남중 고도 · 북극성 · 주극성 · 24절기( 춘분 · 하지 · 추분 · 동지) · 극야 · 백야 · 박명
시간 체계 태양일 · 항성일 · 회합 주기 · 태양 중심 율리우스일 · 시간대 · 시차 · 균시차 · 역법
측성학 연주운동 · 거리의 사다리( 연주시차 · 천문단위 · 광년 · 파섹)
천체물리학
천체역학 궤도 · 근일점 · 원일점 · 자전( 자전 주기) · 공전( 공전 주기) · 중력( 무중력) · 질량중심 · 이체 문제( 케플러의 법칙 · 활력방정식 · 탈출 속도) · 삼체문제( 라그랑주점 · 리사주 궤도 · 헤일로 궤도 · 힐 권) · 중력섭동( 궤도 공명 · 세차운동 · 장동 · 칭동) · 기조력( 조석 · 평형조석론 · 균형조석론 · 동주기 자전 · 로슈 한계) · 비리얼 정리
궤도역학 치올코프스키 로켓 방정식 · 정지궤도 · 호만전이궤도 · 스윙바이 · 오베르트 효과
전자기파 흑체복사 · 제동복사 · 싱크로트론복사 · 스펙트럼 · 산란 · 도플러 효과( 적색편이 · 상대론적 도플러 효과) · 선폭 증가 · 제이만 효과 · 편광 · 21cm 중성수소선 · H-α 선
우주론
기본 개념 허블-르메트르 법칙 · 우주 상수 · 빅뱅 우주론 · 인플레이션 우주론 · 표준 우주 모형 · 우주원리 · 암흑물질 · 암흑에너지 · 디지털 물리학 · 평행우주 · 다중우주 · 오메가 포인트 이론 · 모의실험 가설 · 홀로그램 우주론
우주의 역사 우주 달력 · 우주배경복사( 악의 축) · 재이온화
기타 개념 핵합성( 핵융합) · 중력파 · 중력 렌즈 효과 · 레인-엠든 방정식 · 엠든-찬드라세카르 방정식
천체관측
관측기기 및 시설 천문대 · 플라네타리움 · 망원경( 쌍안경 · 전파 망원경 · 간섭계 · 공중 망원경 · 우주 망원경) · CCD( 냉각 CCD) · 육분의
관측 대상 별자리( 황도 12궁 · 3원 28수 · 계절별 별자리) · 성도 · 알파성 · 딥 스카이( 메시에 천체 목록 · NGC · 콜드웰 목록) · 스타호핑법 · 엄폐 · 동시천문현상 · 빛공해
틀:태양계천문학·행성과학 · 틀:항성 및 은하천문학 · 천문학 관련 정보
}}}}}}}}}

1. 개요2. 상세3. 중요성4. 주요 방법
4.1. 연주시차4.2. 빛의 반사
4.2.1. 태양계 내4.2.2. 성운에 의한 광학적 효과
4.3. 운동 성단4.4. 표준 광원(Standard Candle)4.5. 스펙트럼4.6. 은하의 밝기
4.6.1. 툴리-피셔 관계4.6.2. 페이버-잭슨 관계
4.7. 허블-르메트르 법칙
5. 번외: 별의 크기 측정6. 참고 자료

1. 개요

파일:external/inspirehep.net/ladder2.png
Distance Ladder

천문학에서 천체까지의 거리를 재는 방법들에 대한 문서. 가까운 거리에서부터 점차 측정에 사용되는 방법을 바꿔 가면서 먼 거리로 확장해 나가는 것을 사다리를 타고 올라가는 것에 비유하여 이러한 이름이 붙었다.

2. 상세

지구 안에 있는 두 지점에 대한 거리를 구할 때는 고대에는 그냥 직접적인 측량밖에 답이 없었지만 차츰 에라토스테네스 같은 수학자들이 지구의 둘레를 구하는 방법을 알아내면서 여러 가지 방법으로 측량하게 되었다. 현대로 오면서 여전히 유리섬유 등으로 만든 줄자로 직접적인 측량을 하는 방법을 사용하기도 하고, 기하학을 통해 구하는 간접거리측량도 사용된다. 이러한 데이터들이 쌓이면서 정밀한 지도가 나오고 최종적으로 인공위성이 나오면서 실시간으로 두 지점간의 대략적인 거리도 알 수 있게 되었다.

그런데 천체의 경우, 가장 가까운 조차도 수십만 km의 줄자를 도달시킬 수는 없으므로(...) 직접측량법은 당연히 봉인된다. 그래도 달이나 태양, 행성과 가까운 항성과의 거리는 여전히 기하학을 이용한 측정법으로 간접 측정이 가능하다. 그러나 수백, 수천 광년쯤 되는 의 거리나 그보다 더 먼 성단, 은하 등의 거리는 이마저도 통하지 않아 새로운 방법들이 만들어졌다. 바로 을 이용한 방법들인데 자세한 것은 후술.

3. 중요성

천문학에서는 무엇보다 중요한 것이 일단 목표를 찾아내는것, 그 다음으로는 그 목표까지의 거리를 구하는 것이다. 거리는 우주를 연구하는 데에 가장 큰 단서가 된다. 거리를 측정하는 것은 천문학에서 가장 중요한 목표 중 하나인데, 천문학에서 사용되는 모든 천체의 연구는 거리를 통한 영점 조절부터 시작하기 때문이다. 즉, 아무리 찾아낸 천체가 많아도 각각의 거리를 알지 못하면 개개의 천체를 동등한 위치에 놓고 비교하지 못한다는 말이다. 그 이유는 단순한데, 거리가 멀면 그만큼 천체가 작고 어둡게 보이기 때문. 거리를 모르면 그 천체의 크기가 정말 작고 어두운 건지 아니면 멀리 떨어져 있기 때문에 단순히 그렇게 보이는 것인지 분간할 수가 없다!

그러나 일반인의 상상을 초월할 정도로 멀리 떨어진 천체들을 다루는 천문학에서 거리를 측정하는 것은 그리 쉬운 일이 아니다. 쉽게 생각해서 지구상에서 쓰이는 거리 측정 방법[1]으로는 태양계 내 행성까지의 거리를 재는 것도 벅차다. 실제로 현대 천문학의 초창기에는 천체까지의 거리 측정 오차가 수백%(!) 에 달하는 경우가 빈번했으며, 심지어 해당 천체가 우리 은하 내에 있는 것인지, 아니면 수십억 광년 떨어진 천체인지조차도 논란이 있었던 경우가 많았다.

이 때문에 거리 사다리는 온갖 잡다한 도구들로 뒤섞여 있는데, 이러한 다양한 방법들이 같은 천체에 대해서 사용되면서 교차 검증이 이루어져 서로를 상호 보완해주는 것이 천문학에서 거리 측정의 기본 골자이다. 즉, 거리 사다리에 새로운 거리측정방법을 도입하려면 우선 비슷한 대역에 있는 다른 방법들과 대조해보아 잘 맞는지 시험해보아야 한다.

과거 천문학자들이 이러한 방법을 무수히 반복하여 축적된 데이터를 기반으로 하기 때문에 현대 천문학에서 수십억 광년 떨어진 은하까지의 거리를 잴 수 있게 되는 것이다.

4. 주요 방법

거리 사다리를 이루는 요소들 중 많이 사용되고 오차가 적은 것으로 판명된 방법들을 서술한다.

4.1. 연주시차

앞서 언급된 기하학적인 방법이자 가장 기본적인 방법. 주시안 문서에서 볼 수 있듯 같은 거리의 물체를 보더라도 눈의 위치에 따라 물체의 위치가 달라보이는 시차를 이용한 방법이다. 지구는 태양 주위를 회전하는 만큼 지구의 위치에 따라 별의 위치가 미세하게 달라지고, 이를 통해 별, 지구, 태양으로 만들어지는 삼각형의 각도를 구해 별과의 거리를 구할 수 있다.
보통 가장 먼저 언급되기도 하고 이 방법만 짧게 언급되고 끝나는 책들도 많은데, 사실 이 방법은 한계가 아주아주 명확한 측정방법이다. 왜냐하면 지구와 태양까지의 거리인 '기선'이 별과의 거리에 비해 턱없이 짧기 때문. 기선제압 당장 1광년만 해도 9조 4600억 km인데 지구와 태양까지의 거리인 1 [math(rm au)]는 1억 5천만 km로 64000분의 1에 불과하다. 당장 어지간히 가까운 별들의 시차도 1초 이내인데다 60광년쯤 되는 별들만 해도 시차가 0.05초밖에 되지 않는 위엄을 자랑한다.[2] 따라서 보통은 100 파섹 정도까지만 사용한다.

게다가 파섹의 정의조차 아래와 같은 환원 불능(casus irreducibilis)[3]한 비례상수를 갖기 때문에 실제로 거리를 재려면 계산기 등으로 근삿값을 구해서 사용해야만 한다.
[math(1\,{\rm pc} = i + \dfrac{2i}{e^{i\pi/324000}-1}\,{\rm au})]
이런 문제가 있어 2015년부터는 파섹의 정의가 아래와 같이 변경되었다.
[math(\begin{aligned}1{\rm\,pc} &= \dfrac{648000}{\pi}\,{\rm au} \\ &\approx 206\,264.806\,25{\rm\,au} \\ &\approx 3.261\,563\,777\,1{\rm\,ly} \\ &\approx 3.085\,677\,581\,5\times10^{16}{\rm\,m}\end{aligned})]

사실 어느 방법이든 사다리를 타고 내려가 보면 거의 모든 거리측정 방법이 삼각 시차 방법에서 시작되었다는 것을 알 수 있다. 기하학에 기반한 방법이기 때문에 그럴 일은 없겠지만 만일 삼각시차 방법이 틀린 것으로 판명된다면 우리가 알고 있는 모든 천체까지의 거리를 바꿔야 할지도 모른다. 지구 궤도를 이용한 연주 시차가 이에 해당한다.

4.2. 빛의 반사

4.2.1. 태양계 내

태양계 내의 위성들과 행성들의 거리를 재는 방법. 그냥 간단하게 빛을 쏘아서 천체에 반사되어 되돌아오는 시간을 계산하는 방법이다. 물론 이 이상의 천체에 빛을 쏠 경우 몇 년(...)이 걸리며 돌아온 빛을 측정할 수 있다는 보장도 없으므로 정말 태양계 안에서만 쓰는 방법이다.

4.2.2. 성운에 의한 광학적 효과

성운의 반사로 인해 빛보다 더 빠른 것처럼 보이는 빛메아리 효과 등과 같은 광학/기하학적 방법을 통해 거리를 측정할 수 있다. 그 과정에서 가정은 불필요하므로 삼각시차와 같이 가장 정확한 거리 측정 방법이 된다.

4.3. 운동 성단

우주공간 상에서 같은 방향으로 평행하게 이동하는 별들이 있다면 우리 눈에는 그 성단의 구성원들이 하나의 수렴점을 중심으로 이동하는 것처럼 보이게 된다. 이 수렴점의 방향이 바로 별들이 이동하는 방향인데, 이 때 도플러 효과로 측정한 시선 방향의 속도와 별들의 고유 운동을 조합하여 기하학적인 방법으로 거리를 측정할 수 있다.

4.4. 표준 광원(Standard Candle)

앞서 언급된 연주시차로 재기 어려운 천체의 거리를 잴 때 측정하는 방법 중 하나. 별의 밝기는 거리의 제곱에 반비례한다는 원리를 이용한 방법이다. 우주 어디에서 발견되든 항상 밝기가 동일하거나, 변광 주기 등의 측정을 통해 밝기를 측정할 수 있는 천체가 있다면 이 천체의 실시등급과의 비교를 통해 거리를 측정할 수 있다. 즉, 별의 절대등급만 알 수 있으면 거리도 알 수 있다는 것. 다만 별의 절대등급을 알아내려면 먼저 겉보기 등급과 거리를 알아내야 하기에 거리를 몰라도 밝기를 알아낼 수 있는 천체에 한정된다. 왜냐하면 두 개의 별의 겉보기 등급이 같다고 했을 때 이 별들이 거리차이로 인해 밝기가 같아 보이는 것인지 거리와 밝기가 비슷해서 등급이 비슷하게 나오는지는 알 수 없기 때문이다.

겉보기 등급은 관측으로 구할 수 있으므로 구한 절대등급과 겉보기 등급을 별의 등급에 있는 식으로 계산하면 별과의 거리를 알 수 있다. 이때 해당 별이 성단이나 성운에 소속되어 있으면 다른 성단이나 성운의 별들의 거리차이가 지구와의 거리차이에 비해 무시할 수 있을만큼 작기 때문에 세페이드 변광성의 거리만 구하면 천체 자체의 거리도 자동으로 구해지는 것이나 마찬가지이다. 이 방법으로 5000만~6500만 광년 떨어진 천체의 거리를 구할 수 있다.

거리 사다리의 90% 이상을 이 방법이 차지하고 있다. 대표적인 예로 세페이드 변광성, 거문고자리 RR형 변광성, Ia형 초신성 등이 사용되고 있다. 미국의 스완 리버트라는 천문학자는 성운에 있는 변광성들을 연구하면서 세페이드 변광성의 겉보기 등급 차이가 절대등급의 차이를 나타낸다는 것을 알아냈으며, 이 업적을 토대로 변광성의 주기와 변광성의 절대등급에 대한 그래프를 만드는데에 성공했다. 세페이드 변광성은 이렇게 수천만 광년까지의 별의 거리를 구할 수 있을 정도로 밝은 별들이 많다.

그러나 어쨌든 항성이기 때문에 측정 거리에 한계가 존재한다. 그래서 과학자들은 이번엔 더 밝은 초신성에 주목하여 천체의 거리를 알아내는 데에 사용했다. 쌍성계의 중력 차이로 인한 백색왜성의 초신성은[4] 밝기가 일정하다는 사실을 알아냈고, 변광성 때와 비슷한 방법으로 거리를 측정하여 20억 광년까지의 거리를 구하는 데에 성공했다.

더 최근에는 은하의 H-R도를 작성하고 거기서 가장 밝은 적색거성을 표본화 된 색등급도에서 가장 밝은 적색거성과 비교하여 거리를 측정한다. 다만 이렇게 별들을 비교하는 방법은 그 은하의 별과 표본 별의 연령, 화학조성 등이 모두 동일해야 정확하게 거리를 측정할 수 있다.

4.5. 스펙트럼

별의 스펙트럼은 사람의 DNA와 비슷하다고 보면 된다. 스펙트럼을 통해 항성의 질량 밀도, 구성성분까지 추정할 수 있으며 주계열성의 스펙트럼을 통해 실제 밝기를 알아내는 것도 가능하다. 푸른 주계열성일수록 실제 밝기가 밝으며, 붉은 주계열성일수록 어둡다. 이렇게 실제 밝기를 알아내면 거리에 따른 밝기 차이를 통해 천체의 거리를 구할 수 있다. 이 방법으로 구한 거리의 오차는 10%~수십%.

4.6. 은하의 밝기

4.6.1. 툴리-피셔 관계

나선은하의 특징에 기대서 광도를 구하고 마찬가지로 밝기와 거리와의 관계를 이용해 구하는 방법.

나선은하의 경우 은하의 최대 회전속도[5]와 표면밝기[6] 사이에 성립하는 경험적인 관계를 통해 은하의 광도와 보통물질[7]의 질량를 측정할 수 있다. 은하에 별이 많을수록 은하의 질량이 늘어나고, 별이 많기 때문에 밝기는 당연히 밝아진다. 그리고 질량이 높은 나선은하는 회전속도가 빨라지기 때문에 이러한 회전속도를 측정한다. 여기서 광도를 측정할 수 있으므로 거리 또한 측정하여 관계식을 얻어냄으로써 거리를 구할 수 있게 된다. 이를 툴리-피셔 관계라 한다. 은하의 회전속도를 알아내는데에는 물론 스펙트럼 등이 사용된다.

위키백과 문서 참고

4.6.2. 페이버-잭슨 관계

타원은하의 경우 은하의 속도분산[8]과 광도 사이에 성립되는 경험적인 관계를 통해 광도를 측정할 수 있다. 이를 페이버-잭슨 관계라고 한다.

4.7. 허블-르메트르 법칙

에드윈 허블이 발견한 허블 법칙을 이용한 거리 측정 방법. 밝기로도 재기 어려운 먼 거리의 천체의 거리를 잴 때 사용되는 방법들이다. 멀리 떨어진 은하는 그만큼 빠른 속도로 멀어지고 있다는 사실에 기반한다. 적용 방법은 간단하다. 단순히 적색편이로 측정한 은하의 후퇴 속도에 허블 상수를 곱하면 거리가 된다. 현재 가장 널리 사용되는 허블 상수는 약 72km/s/Mpc. 우주 팽창은 거시적인 영역에서만 이루어지고 있기 때문에 허블 법칙도 어느 정도 멀리 떨어진 은하들에게만 적용이 가능하다. 안드로메다 은하처럼 가까이 있는 은하에는 사용할 수 없다. 극단적으로 멀리 떨어진 은하들(10억 광년 이상)에 적용할 수 있는 사실상 유일한 방법이다. 그런데 이 정도 먼 거리에서는 우주 팽창 속도 변화의 영향을 받기 때문에 실제 거리(빛이 여행한 거리)와 허블 법칙으로 측정한 거리 사이에 차이가 발생하게 된다. 암흑에너지[9]도 이 차이로부터 발견된 것. 허블 법칙이 사용되는 수준이면 엄청나게 먼 거리이기 때문에 물리적인 거리가 크게 의미가 없다. 또한 허블 법칙으로 환산되는 거리는 우주모델에 따라, 허블 상수에 따라 변하기 때문에 천문학에서는 정확한 거리값보다는 적색편이(z)값을 애용하며, 적색편이≒우주의 나이≒거리가 동일하게 인식된다. 다만 문서에서도 나와있지만 후퇴속도에 영향을 주는 요소가 거리만 있는 것이 아니기 때문에 큰 오차가 날 수 있는 방법이다.

5. 번외: 별의 크기 측정

별의 크기를 구하는 것은 별의 거리를 구하는 것만큼이나 신기하다. 대표적으로 지구에서조차 점광원이 아닌 몇 없는 적색 초거성 베텔게우스도 지름이 5~9 AU에 달하는[10] 엄청난 크기의 항성이지만 640 광년(약 4100만 AU)이라는 지구에서의 거리에 비하면 약 600만분의 1에 불과하다. 지구에서 봤을 때는 그냥 점이라는 얘기. 거리는 그나마 별이 보이기라도 하면 어떻게든 잴 수 있을 것 같지만 크기는 어떻게 구했는지 궁금해지기도 한다.

이 문제를 해결하기 위해 복수의 망원경으로 망원경의 분해능을 늘리는 방법을 사용한다. 먼저 분해능은 망원경이나 현미경 시력과 같은 것으로 기준 거리에서 얼마나 가까운 두 개체를 두 개로 식별하는 능력이다. 예를 들어 분해능이 나쁜 현미경을 사용하면 두 개의 점이 하나로 보이고, 분해능이 좋은 현미경을 사용하면 같은 거리에서 두 개의 점을 식별할 수 있다. 당연히 망원경의 구경이 커질수록 더 먼 거리의 두 개체를 구분할 수 있으므로 분해능은 향상된다.

그러나 아무리 망원경을 크게 만들어도 별의 크기를 측정할 수 있을 정도로 분해능이 높아지지는 않는다. 그래서 여러 개의 망원경을 거리를 두고 배치하여 '간섭계'를 형성하고, 같은 거리의 천체를 관측하여 간섭계의 크기에 해당하는 가상적인 거대 망원경을 형성하게 된다. 이를 통해 항성의 겉보기 크기를 알아내고 앞서 알아낸 거리를 통해 실제 크기를 구할 수 있다.

물론 이 방법도 한계가 있어서 먼 거리의 항성이면 광도 및 표면 온도와 반지름에 관계된 식 등 여러 가지 관측기록을 바탕으로 구하게 된다.

6. 참고 자료



[1] 레이더, 지구상에서의 삼각시차 등 [2] 또한 지구의 대기로 인해 별들의 밝기가 일정하지 않다는 것도 시차 측정에 어려운 요소가 되었었다. 현재는 대기권의 밖에서 측정을 하는 기술이 개발되어 이 문제는 어느 정도 해소. [3] 허수단위 [math(itriangleq sqrt{-1})] 없이는 표기할 수 없는 실수 [4] Ia형 초신성이다. [5] 혹은 각속도. 도플러 효과로 인해 방출선 스펙트럼의 폭이 증가하는데, 이를 통해 측정 가능하다. [6] 아무리 천체가 많은 빛을 방출하더라도 그 천체가 아주 거대하면 밝게 보이지 않는다. 이것은 표면밝기 문제인데, 즉 점상 천체는 매우 협소한 영역에서 모든 빛이 방출되기 때문에(복사속밀도가 크기 때문에) 아주 밝게 보이지만 성운이나 은하 같은 확산(diffuse) 천체들은 광대한 영역에서 빛이 방출되어, 점상 천체라 가정하고 측정한 등급은 작을지라도 실제로 눈으로 본 등급은 더 크다. 즉 표면밝기는 거리값이 주어지지 않은 겉보기 복사속밀도라 할 수 있다. 요약하면 시직경처럼 각도 단위의 겉보기 면적(제곱도분초) 당 밝기의 개념이다. [7] 중입자 물질, 빛과 같이 관측되지 않는 암흑물질과 대비되는 관측 가능한 물질의 총칭. [8] velocity dispersion, 은하 속의 별들의 운동속도 분포에서 나타나는 분산값. 타원은하의 진화에서 은하 중심 블랙홀의 질량, 은하의 보통물질 질량, 은하의 광도, 심지어 나선은하의 팽대부와도 관계된 중요한 물리량이다. [9] 더 정확히 말하면 가속팽창의 발견이다. [10] 베텔게우스는 맥동 변광성이라 시간에 따라 크기가 변한다.


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는
문서의 r10
, 번 문단
에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r10 ( 이전 역사)
문서의 r ( 이전 역사)