1. 개요
Snell's law빛을 비롯한 파동은 지나고 있는 매질의 성질에 따라서 다른 진행 속도를 가지게 되는데, 이때 매질에 따른 속도의 차이에 의해 진행 방향이 꺾이는 굴절 현상이 일어난다. 스넬의 법칙은 이때 일어나는 파동의 굴절 현상을 정량적으로 정리하여 설명하는 법칙이다.
네덜란드의 수학자 겸 천문학자인 빌러브로어트 스널 판로연(Willebrord Snel van Royen)[1]이 발견했다.
2. 수식
빛[2]이 굴절률 [math(n_{1})]인 매질 I에 입사각 [math(\theta_{1})]으로 입사했다고 가정하자. 이때, 빛은 두 매질의 경계면에서 반사되는 빛과 굴절률 [math(n_{2})]인 매질 II에 투과되어 굴절되는 빛이 생기며, 반사의 법칙에 따라 반사광의 반사각은 입사각 [math(\theta_{1})]과 같고, 굴절광의 굴절각은 입사각과 다음의 관계에 있다.
[math( \displaystyle n_{1}\sin{\theta_{1}}=n_{2}\sin{\theta_{2}} )]
따라서 매질 I에 대한 매질 II의 상대 굴절률 [math(n_{12})]은 다음과 같이 나타낼 수 있다.
[math(\displaystyle n_{12} \equiv \frac{n_{2}}{n_{1}}=\frac{\sin{\theta_{1} }}{\sin{\theta_{2}} }=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}} )]
여기서 [math(v_{i})]는 매질 [math(i)]에서의 빛의 속도, [math(\lambda_{i})]는 매질 [math(i)]에서의 빛의 파장이다.
여러 매질이 있을 경우 다음이 성립한다.
[math( \displaystyle n_{i}\sin{\theta_{i}}=\textsf{const.} )]
3. 유도
3.1. 전자기파의 특성에서의 유도
전자기학의 경계치 문제 문서를 통해 매질에 경사 입사된 전자기파의 매질면의 파동이 연속적이라는 조건을 통해 스넬의 법칙을 얻어내었다. 해당 문서를 참조한다.3.2. 페르마의 원리를 통한 유도
편의상 [math(xy)]평면 상에서 빛이 진행한다고 가정하자. [math(y>0)]인 구역의 굴절률을 [math(n_{1})], [math(y<0)]인 구역의 굴절률을 [math(n_{2})]라 하자. 여기서 [math({\rm P}(x_{1},\,d))]에서 [math({\rm{Q}}( x_{2},\,-d))]로 빛이 이동했다고 하자. 이때, [math(\rm P)]는 [math(y>0)]인 영역에, [math(\rm Q)]는 [math(y<0)]인 영역에 존재한다. 여기서 지나간 경계면의 [math({\rm B}(x,\,0))]을 지났다고 가정하자. 이때, 걸리는 시간은 굴절률 [math(n=c/v)]로 정의되는 점에 유의하면 시간은 지나간 거리를 속력으로 나누면 되므로
[math(\displaystyle t=\frac{n_{1}\sqrt{(x-x_{1})^2+d^{2}} }{c}+\frac{n_{2}\sqrt{(x_{2}-x)^2+d^{2}} }{c} )]
페르마의 원리에 따르면 이 값이 최솟값을 가져야 하므로
[math(\displaystyle \frac{{\rm d}t}{{\rm d}x}=0 )]
가 성립해야 한다.
[math(\displaystyle \frac{{\rm d}t}{{\rm d}x}=\frac{n_{1}}{c}\frac{x_{1}-x}{\sqrt{(x-x_{1})^2+d^{2}} }-\frac{n_{2}}{c}\frac{x_{2}-x}{\sqrt{(x_{2}-x)^2+d^{2}} }=0 )]
이므로
[math(\displaystyle \begin{aligned} n_{1} \cdot \frac{x_{1}-x}{\sqrt{(x_{1}-x)^2+d^{2}} }&= n_{2} \cdot \frac{x_{2}-x}{\sqrt{(x_{2}-x)^2+d^{2}} } \\ \\ \therefore n_{1}\sin{\theta_{1}}&=n_{2}\sin{\theta_{2}} \end{aligned} )]
이다. 이것은 위 그림의 그래프에서 간단한 삼각비를 적용하면 얻는다.
3.3. 변분법을 통한 유도
이번에도 [math(xy)]평면에서 빛이 이동한다고 가정할 것이다. 이때, 빛의 궤적이 어떠한 함수 [math(y(x))]의 그래프를 따라간다고 가정하면, 미소 거리 [math({\rm d}s)]를 지날 때 걸리는 미소 시간은
[math(\displaystyle {\rm d}t=\frac{n(x)\,{\rm d}s}{c} )]
[math(n(x))]는 [math(x)]에서의 굴절률이다. 따라서 점 [math({\rm P}(x_{1},\,y_{1}) \to {\rm Q}(x_{2},\,y_{2}))]로 빛이 이동했다고 가정하면
[math(\displaystyle t=\frac{1}{c}\int_{x_{1}}^{x_{2}} n(x)\sqrt{1+y'^{2} }\,{\rm d}x )]
따라서 [math(t)]는 범함수가 되며, 이것이 최소화되려면 오일러 방정식
[math(\displaystyle \frac{\partial J}{\partial y}-\frac{{\rm d}}{{\rm d}x}\frac{\partial J}{\partial y'}=0 \qquad (J\equiv n(x)\sqrt{1+y'^{2} }))]
을 만족해야 한다. 이상에서
[math(\displaystyle \begin{aligned} \frac{{\rm d}}{{\rm d}x} \biggl[n(x) \cdot \frac{y'}{\sqrt{1+y'^2}} \biggr] &=0 \end{aligned})]
를 얻으므로 결국 각괄호 안은 상수가 돼야 한다.
[math(\displaystyle n(x) \cdot \frac{y'}{\sqrt{1+y'^2}}=\textsf{const.} )]
이때, [math(n(x) \geq 0)]이고, 위 식에 절댓값을 씌워
[math(\displaystyle n(x) \cdot\biggl| \frac{y'}{\sqrt{1+y'^2}} \biggr|=\textsf{const.} )]
임을 얻는다.
그런데 위 그래프의 점 [math(\rm R)]을 보면 결국 [math(y')]은 해당 점에서의 접선의 기울기와 같고, 그 값은 점 [math(\rm{R})]에 [math(x)]축과 평행한 선을 그었을 때, 접선과 해당 선이 이루는 예각의 크기를 [math(\theta)]라 하면 [math(\tan{(\pi-\theta)}=-\tan{\theta})]이고, [math(|y'|=\tan{\theta})]이다. 이상에서
[math(\displaystyle \begin{aligned} \biggl| \frac{y'}{\sqrt{1+y'^2}} \biggr|&= \frac{|y'|}{\sqrt{1+|y'|^2}} \\&= \frac{\tan{\theta}}{\sqrt{1+\tan^2{\theta} }} \\ &= \frac{\tan{\theta}}{\sec{\theta}} \\&=\sin{\theta} \end{aligned} )]
따라서 다음의 스넬의 법칙을 얻는다.
[math(\displaystyle \begin{aligned} n(x)\sin{\theta}=\textsf{const.} \end{aligned} )]
4. 임계각
[math(n_{1}<n_{2})]가 성립할 때, 굴절률 [math(n_{2})]인 매질 II에서 굴절률 [math(n_{1})]인 매질 I로 빛을 [math(\theta_{2})]의 입사각으로 입사한다고 가정해보자. 이때, 특수 조건을 만족하면 굴절각 [math(\theta_{1}=90\degree)]가 되는데, 그 각을 임계각(critical angle)이라 한다. 이 임계각을 초과하는 입사각으로 빛을 입사할 시엔 전반사가 일어난다.스넬의 법칙을 이용하여
[math( \displaystyle n_{2}\sin{\theta_{2}}=n_{1}\sin{(90\degree)} )]
임계각을 다음과 같이 구할 수 있다.
[math( \displaystyle \theta_{2}=\arcsin{\biggl(\frac{n_{1}}{n_{2} }\biggr)} )]
5. 응용
- 사이클로이드가 최단강하곡선이라는 것을 증명할 때 베르누이 요한이 "빛이 밀도가 점점 증가하는 물질의 연속적인 층을 통과할 때 만드는 곡선을 찾아라" 라는 문제로 바꾸어 스넬의 법칙을 응용할 수 있었다.