논리학 Logics |
|||
{{{#!wiki style="margin: -0px -10px -5px; min-height: 28px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px;" |
<colbgcolor=#2ab5b5> 형식 논리 | 명제 논리( 논리 연산 · 삼단논법( 정언삼단논법) · 순환 논법) · 공리 · 진리치 · 술어 논리 · 논증( 논증의 재구성) · 모순 · 역설 · 논리적 오류( 논리적 오류/형식적 오류) · 변증법 | |
<colcolor=#000,#fff> 비표준 논리 | 직관 논리 · 양상논리 · 초일관 논리 · 다치논리( 퍼지논리) · 선형논리 · 비단조 논리 | ||
메타 논리 | 집합론 · 완전성 정리 · 불완전성 정리 | ||
비형식 논리 | 딜레마( 흑백논리) | ||
비형식적 오류 | 귀납적 오류 · 심리적 오류 · 언어적 오류 · 자료적 오류 · 양비론 · 진영논리 · 편견 및 고정관념 · 궤변 · 거짓 등가성 | ||
분야 | 수학철학 · 수리논리학 | ||
철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 · 수리논리학 둘러보기 |
수학기초론 Foundations of Mathematics |
|||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
다루는 대상과 주요 토픽 | ||
수리논리학 | 논리 · 논증{ 귀납논증 · 연역논증 · 귀추 · 유추} · 공리 및 공준 · 증명{ 증명보조기 · 자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · 더블 카운팅 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문( 조각적 정의) · 명제 논리( 명제 · 아이버슨 괄호 · 역 · 이 · 대우) · 양상논리 · 술어 논리( 존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론 | ||
집합론 | 집합( 원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계( 동치관계 · 순서 관계) · 순서쌍( 튜플) · 서수( 하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC( 선택공리) · 기수( 초한기수) · 절대적 무한 · 모임 | ||
범주론 | 범주 · 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 | ||
계산가능성 이론 | 계산 · 오토마타 · 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수 | ||
정리 | |||
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 집합-부분합 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 완전성 정리 · 불완전성 정리( 괴델 부호화) · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리 | |||
기타 | |||
예비사항( 약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학 | |||
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 | }}}}}}}}} |
1. 퍼지 이론
퍼지 논리(fuzzy logic) 라고도 불린다. 아제르바이잔 출신 미국인 수학/공학자 롯피 자데(Lotfi A. Zadeh)가 처음으로 제안했는데, 그는 자신의 아내의 아름다움을 수학적으로 계산하기 위해 이 이론을 고안했다고 한다.우리가 흔히 알고 있는 명제 혹은 집합에서는 참, 거짓과 같이 객관적으로 뜻이 명확한 것들만을 다룬다. 그러나 그런 이상적인 상황과는 달리, 실제 생활에서는 뭐든지 참이나 거짓으로 딱 나뉘지 않는다. 이 애매모호한 기준을 다루기 위해 생긴 수학적 도구가 바로 퍼지 이론이다.[1] 따라서 퍼지 이론에서는 불분명하거나 주관적인 기준 역시 명제, 집합 따위를 이용해 설명할 수 있다.
예를 들어, 일반적인 명제, 집합에서는 '작은 숫자들의 모임'과 같이 주관적인 건 정의되지 않았다. 그러나 퍼지 이론에서는 그런 불분명한 기준을 정도에 따라 단계별로 제시하여 설명한다. 예컨대 '빠른 동물들의 모임'이라고 하면 '빠른 동물들', '조금 빠른 동물들', '조금 느린 동물들', '느린 동물들' 등으로 분류할 수 있다.
퍼지 이론은 처음엔 잘 받아들여지지 못했다. 많은 사람들이 '애매한 기준'에 대해 수학적으로 논한다는 것 자체가 기존의 수학 개념들과 상반되어 허용될 수 없다고 생각했기 때문이다. 당장 자데의 절친한 친구이자, 칼만 필터를 개발한 루돌프 칼만에게 혹독한 평가를 들었는데, 절친한 동료로부터도 비난을 받을 정도이니 말 다한 것이다. 그러나 애매모호한 기준을 다루는 퍼지는 실제 상황을 다루기가 편리했으므로 여러 분야에 널리 쓰이게 됐다.
퍼지 이론은 일본 가전 업계에 큰 영향을 주었는데, 당시 '일본이 미국의 기초연구를 도둑질해서 제품 개발만 한다'는 미국 쪽의 비난을 부담스러워하는 일본 내 분위기에서 일본 대학에서 진행되던 퍼지 기술 연구에 기업이 합류했다. 1987년 히타치는 센다이시 당국에 납품한 전철용 퍼지 제어시스템으로 대성공을 거뒀다. 급가속·급제동을 격감시켰고, 플랫폼의 정위치에 열차를 세울 수 있었으며, 전력 소비도 절감할 수 있었다. 퍼지 기술이 적용된 진공청소기, 밥솥, 카메라, 캠코더, 식기세척기, 등유 온풍기 등이 쏟아져 나왔다. 기초연구를 통해 추상적인 퍼지 이론을 실용화해냄으로써 ‘일본의 미국 기초연구 무임승차론’을 붕괴시켰다고 일본이 자부할 정도의 거대한 충격이었고 이 것은 이어서 국내 가전 업계에 큰 자극을 주었다.[2]
국내에서는 제17대 카이스트 총장 이광형과, 공주대학교의 성열욱 명예교수가 이 분야에서 잘 알려져 있다. 그에 따라 국내에서는 1990년대에 주로 연구가 이루어졌다.
퍼지 이론은 외국에 비해 한국에서는 그다지 연구되고 있지 않다. 예전에 비해 현재는 논문도 많이 나오고 있지 않다. 20여년 전 한때 퍼지 이론이 유행할 때는 공학 분야에서는 이용되는 경우가 종종 있었다. 세탁기, 사진기, 발효 식품, 자동차 브레이크와 엔진, 컬러 필름 현상, 제조 공정, 기상 분석, 인공지능 등 다양한 방면에 응용된 일이 있다. 퍼지 논리를 활용하여 사회과학 제 분야에서 특정 사회 현상의 (충분)조건을 밝히거나 특정 사회 현상을 충족하는 유형의 분류 등에 활용된 연구도 있다.[3]
2. 퍼지 집합과 멤버십 함수
일반적인 집합을 [math(X)]라 할 때 퍼지 집합은 각 원소들에 대하여 소속도(grade)의 개념을 추가한 집합을 말한다. 예를 들어 함수 [math(f:X\to \left[0, 1\right])]가 있을 때 다음과 같은 집합을 말한다.
[math(\left\{\left(x, f\left(x\right)\right)|x\in X\right\})]
이 때 f를 멤버십 함수(membership function)라 부른다.
[1]
영단어 'fuzzy'가 '애매모호함'을 뜻한다.
[2]
https://www.hani.co.kr/arti/science/technology/1113026.html
[3]
퍼지 논리 자체가 논리학을 기반으로 하고 있으므로, 사회과학에도 활용될 수 있으며, '정량'과 '정성'이 계속해서 충돌하는 사회과학에서 '애매함'을 정량적 방법으로 논할 수 있다는 점이 매력적으로 여겨질 수 있다.