최근 수정 시각 : 2024-12-21 23:42:25
}}}}}}}}} ||
1. 개요2. 증명3. 일반화3.1. 여러 함수의 곱의 미분3.2. 두 함수의 곱의 여러 번 미분3.3. 여러 함수의 곱의 여러 번 미분 4. 삼각함수의 곱미분5. 기타6. 관련 문서 product rule
곱미분이란, 두 실함수 [math(f(x))]와 [math(g(x))]의 곱의 형태를 가진 함수 [math(f(x)g(x))]의 도함수를 구하는 공식으로, 다음과 같다.
[math( [f(x)g(x) ]'=f'(x)g(x) + f(x)g'(x) )]
|
미분계수의 정의에 의하여 함수 [math( \displaystyle F(x) = f(x)g(x))]의 도함수를 구해 보자.
[math( \displaystyle \begin{aligned} F'(x) &= \lim_{h \to 0} \frac{F(x+h)-F(x)}{h} \\&=\lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x)g(x)}{h} \end{aligned} )]
|
분자에 [math(f(x)g(x+h))]를 빼고 더하면,
[math( \displaystyle \begin{aligned} F'(x) &=\lim_{h \to 0} \frac{f(x+h)g(x+h)-f(x)g(x+h)+f(x)g(x+h)-f(x)g(x)}{h} \\&=\lim_{h \to 0} \frac{f(x)[g(x+h)-g(x) ]+g(x+h)[f(x+h)-f(x) ]}{h} \\&=f(x) \lim_{h \to 0} \frac{g(x+h)-g(x)}{h} +\lim_{h \to 0} g(x+h) \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\&=f(x)g'(x)+f'(x)g(x) \end{aligned} )]
|
두 함수 [math(f(x))], [math(g(x))] 모두 좌미분계수만 존재하거나, 우미분계수만 존재한다고 하더라도, 위의 증명에서 [math(h \to 0)]을 [math(h \to 0^{+})] 또는 [math(h \to 0^{-})]로 바꾸어도 증명에 무리가 없으므로, 좌미분계수, 우미분계수에 대해서도 곱의 미분법이 성립한다.
2.1. 세 가지 식이 곱해져 있는 경우
세 함수 [math(f(x))], [math(g(x))], [math(h(x))]가 곱해진 함수 [math(f(x)g(x)h(x))]의 도함수는 위의 결과를 참조해보면, 아래와 같음을 알 수 있다.
[math( \begin{aligned} [f(x)g(x)h(x) ]'&=[[f(x)g(x) ] h(x) ]' \\&= [f(x)g(x) ]'h(x)+f(x)g(x)h'(x) \\&=[f(x)g'(x)+f'(x)g(x) ]h(x)+f(x)g(x)h'(x) \\ &=f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x) \end{aligned} )]
|
아래의 두 일반화 모두
수학적 귀납법으로 증명할 수 있다.
3.1. 여러 함수의 곱의 미분
[math(n)]개의 함수 [math(f_{1}(x), \, \cdots, \, f_{n}(x))]가 모두 미분가능할 때 다음이 성립한다.
[math( [f_{1}(x)f_{2}(x)\cdots f_{n}(x) ]^{\prime}=f'_{1}(x)f_{2}(x)\cdots f_{n}(x)+\cdots+f_{1}(x)f_{2}(x) \cdots f'_{n}(x) )]
|
3.2. 두 함수의 곱의 여러 번 미분
[math(n)]번 미분가능한 함수 [math(f(x))], [math(g(x))]에 대하여
[math( \displaystyle[f(x)g(x) ]^{(n)}=\displaystyle\sum_{r=0}^{n} {{n}\choose{r}} f^{(n-r)}(x)g^{(r)}(x) )]
|
이 성립하는데, 이를 라이프니츠 법칙(Leibniz rule)이라고 한다. 위에서 [math(\binom{n}{r})]는
조합이고, [math(f^{(n)})]은 [math(f(x))]의 [math(n)]계 미분이며 [math(f^{(0)}=f(x))]이다. 이는 보다시피
이항정리와 형태가 매우 유사하다.
- 증명 [펼치기·접기]
- ----
수학적 귀납법으로 증명하자. 증명하고자 하는 명제를 [math(P(n))]이라 하면 [math(P(1))]은 다음과 같다.
[math((fg)'=f'g+fg')]
이며 이는 참이다. 이제 자연수 [math(n)]에 대하여 [math(P(n))]이 참이면 [math(P(n+1))]도 참임을 증명하자. 즉,
[math((fg)^{(n)}=\displaystyle\sum_{r=0}^n {{n}\choose{r}} f^{(n-r)}g^{(r)})]
이 참임을 가정한 채 양변을 미분해 보자.
[math(\begin{aligned}(fg)^{(n+1)}&=\left[\displaystyle\sum_{r=0}^n{{n}\choose{r}}f^{(n-r)}g^{(r)}\right]'\\&=\sum_{r=0}^n\binom{n}{r}f^{(n+1-r)}g^{(r)}+\sum_{r=0}^n\binom{n}{r}f^{(n-r)}g^{(r+1)}\\&=\sum_{r=0}^n\binom{n}{r}f^{(n+1-r)}g^{(r)}+\sum_{r=1}^{n+1}\binom{n}{r-1}f^{(n+1-r)}g^{(r)}\\&=\binom{n}{0}f^{(n+1)}g+\sum_{r=1}^{n}\binom{n}{r}f^{(n+1-r)}g^{(r)}+\sum_{r=1}^n\binom{n}{r-1}f^{(n+1-r)}g^{(r)}+\binom{n}{n} fg^{(n+1)}\\&=\binom{n+1}{0} f^{(n+1)}g+\left(\sum_{r=1}^n\left[\binom{n}{r-1}+\binom{n}{r} \right]f^{(n+1-r)} g^{(r)} \right)+\binom{n+1}{n+1}fg^{(n+1)}\\&=\binom{n+1}{0} f^{(n+1)}g+\sum_{r=1}^n \binom{n+1}{r}f^{(n+1-r)}g^{(r)}+\binom{n+1}{n+1}fg^{(n+1)}\\&=\sum_{r=0}^{n+1}\binom{n+1}{r}f^{(n+1-r)}g^{(r)}\end{aligned})]
이 결과는 [math(P(n+1))] 그 자체이므로 모든 자연수 [math(n)]에 대하여 [math(P(n))]이 증명되었다.
이항정리와의 유사성을 이용한, 좀 덜 엄밀하지만 더 직관적인 증명도 있다.
- 증명 [펼치기·접기]
- ----
[math({a^m}{b^n})]에 [math(a+b)]가 곱해질 때 나오는 결과를 보자.
[math({a^m}{b^n}\times(a+b)={a^{m+1}}{b^n}+{a^m}{b^{n+1}})]
이 식은 [math(f^{(m)}(x)g^{(n)}(x))]를 미분한 결과인 [math(f^{(m+1)}(x)g^{(n)}(x)+f^{(m)}(x)g^{(n+1)}(x))]와 형태가 같다.
그러므로 [math(\displaystyle\sum{c_{ij}f^{(i)}(x)g^{(j)}(x)})]를 한 번 미분한 식의 계수는 [math(\displaystyle\sum{c_{ij}a^{i}b^{j}})]에 [math(a+b)]를 곱한 식의 계수와 같다. 따라서, 이항정리에 의해 라이프니츠 법칙이 증명되었다.
3.3. 여러 함수의 곱의 여러 번 미분
[math(n)]번 미분가능한 [math(m)]개의 함수 [math(f_1,\,\cdots,\,f_n)]이라 하면
[math(\left(f_1 f_2 \cdots f_m\right)^{(n)}=\displaystyle\sum_{k_1+k_2+\cdots+k_m=n} {n \choose k_1, k_2, \ldots, k_m}\prod_{1\le t\le m}f_{t}^{(k_{t})})]
이는 보다시피
다항정리와 형태가 매우 유사하다. 이것을 함수 2개인 경우에 대해 적은 것이 일반 라이프니츠 규칙이다.
4. 삼각함수의 곱미분
[math(F(x) = f(x)g(x) )]에서 곱미분에 의해 [math(F'(x) = f'(x)g(x) + f(x)g'(x) )]이다.
한편, [math(f(x) = g(x) )]로 놓으면
[math( \left\{g(x)g(x) \right\}'= g'(x)g(x) + g(x)g'(x) = 2 g(x)g'(x))]
|
따라서
[math( \left[ \left\{ g(x) \right\}^n \right]' = n \left\{ g(x) \right\}^{n-1} g'(x) )]
|
임을 알 수 있다. [math( g(x) = \sin x )]를 대입하면 아래와 같은 식을 얻는다.
[math( \left\{ \sin^n x \right\}' = n \sin^{n-1} x \sin' x = n \sin^{n-1} x \cos x )]
|
4.1. 삼각함수의 미분 예
-
[math( \sin^2 x )]의 미분: [math( \displaystyle \left( \sin^2 x \right)' = 2 \sin x \sin' x = 2 \sin x \cos x )]
6. 관련 문서