최근 수정 시각 : 2024-11-03 19:24:58
}}}}}}}}} ||
Faulhaber's formula
자연수 [math(k)]에 대한 거듭제곱 [math(k^c)]의 합
[math(\displaystyle \sum_{k=1}^n k^c)]
에 대한 공식이다.
야콥 베르누이 가 발견했기에 종종 베르누이의 공식 이라고도 불리고, 또는 단순히 거듭제곱 합의 공식 이라고도 불린다.
일반식은 다음과 같이 주어진다.
[math(\begin{aligned} \sum_{k=1}^n k^c &= \sum_{k=0}^c \frac{(-1)^k}{c+1} \binom{c+1}k B_k n^{c+1-k} \\ &= \frac1{c+1}B_0n^{c+1} - B_1n^c + \frac c2B_2n^{c-1} - \frac{c (c-1)}6B_3n^{c-2} + \cdots\cdots + \frac{(-1)^{c-1}c}2B_{c-1}n^2 + (-1)^cB_cn \\ &= \frac1{c+1}n^{c+1} + \frac12n^c + \frac c{12}n^{c-1} + \cdots\cdots + \frac{(-1)^{c-1}c}2B_{c-1}n^2 + (-1)^cB_cn \end{aligned})]
여기서 [math(B_k)]는
베르누이 수열 이다. 자세한 내용은 해당 문서 참고. [math(k=1)]일 때 [math(B_1^+ = \dfrac12)]이 되는 베르누이 수열 [math(B_k^+)]를 사용할 경우 [math(B_k^+ = (-1)^kB_k)]이므로 식 형태는 좀 더 깔끔해진다. [math(\dbinom{c+1}k)]는
조합 이다.
식 자체는 복잡해보이지만 [math(B_k = b^k)]로 치환하면 위의 식은
이항정리 를 풀어서 쓴 형태와 유사하다는 걸 알 수 있다.
[math(\displaystyle \sum_{k=0}^c \frac{(-1)^k}{c+1} \binom{c+1}k B_k n^{c+1-k} = \sum_{k=0}^c \frac 1{c+1} \binom{c+1}k (-b)^k n^{c+1-k} = \frac{(n-b)^{c+1} - ( -b)^{c+1}}{c+1})]
그리고
베르누이 다항식 [math(B_c(n))]이
[math(\displaystyle B_c(n) = \sum_{k=0}^c \binom ck B_k n^{c-k})]
로 주어지며, [math(B_k = B_k(0))]과 같으므로 베르누이 다항식을 이용해서 나타내면
[math(\displaystyle \sum_{k=1}^nk^c = \frac{(-1)^{c+1}}{c+1}\{B_{c+1}(-n) - B_{c+1}(0)\})]
임을 알 수 있다.
파울하버는 베르누이가 공식을 발견하기 전에 [math(c)]가 홀수일 경우에 대한 규칙성을 발견하고 [math(c=17)]까지의 식을 제시한 인물로, 공식 자체를 증명한 사람은 아니지만 이와 관련이 있는 '파울하버 다항식'을 먼저 발견한 업적이 있어서인지 파울하버의 이름이 붙은 쪽이 더 유명하다.
베르누이 수열 문서에도 나와있듯이 [math(k \ne 1)]인 홀수이면 [math(B_k = 0)]이라는 성질이 있고 [math(k=1)]일 때의 항은 수식 구조상 반드시 [math(\dfrac12n^c)]이 나오기 때문에 [math(c)]가 홀수일 경우와 짝수일 경우에 따라 다음과 같이 간략화할 수 있다. 자연수 [math(m)]에 대해
[math(c = 2m-1)]이면 [math(B_{c+2} = 0)]이고 항은 [math(k=c-1=2m-2)]까지 존재하므로
[math(\displaystyle \sum_{k=1}^n k^{2m-1} = \frac12n^{2m-1} + \sum_{k=0}^{m-1} \frac1{2m} \binom{2m}{2k} B_{2k} n^{2(m-k)})]
[math(c = 2m-2)]이면 [math(B_c \ne 0)]이므로
[math(\displaystyle \sum_{k=1}^n k^{2m-2} = \frac{1-\delta_{1,\,m}}2 n^{2m-2} + \sum_{k=0}^m \frac1{2m-1} \binom{2m-1}{2k} B_{2k} n^{2(m-k)-1})]
[math(\delta_{1,\,m})]은
크로네커 델타 이다. [math(m=1)], 즉 [math(c=0)]인 경우 따로 분리시켰던 [math(k=1)]일 때의 항을 제거하기 위해 덧붙인 함수이다.
당초 베르누이 자신의 표기법은 다음과 같았는데, 재미있는 것은 그가 죽고 난 뒤 출판된 《추측술》(Ars Conjectandi, 1713)이란 저서에 공식만 덩그러니 놓여있었을 뿐
증명이 같이 실려있지 않았다 는 점이다. 엄밀한 증명은 후대에
야코비 에 의해 이루어졌다.
[math(\displaystyle \sum_{k=1}^n k^c = \frac{n^{c+1}}{c+1} + \frac12n^c + \sum_{k=2}^c \frac{B_k}{k!} c^{\underline{k-1}} n^{c+1-k})]
여기서 [math(c^{\underline{k-1}})]은
하강 계승 으로 [math(c^{\underline{k-1}} = \dfrac{c!}{(c-k+1)!})]이며, 이 관계를 이용하면 [math(c^{\underline{-1}} = \dfrac1{c+1})], [math(c^{\underline 0} = 1)]이므로 거듭제곱 합의 공식은 더 간략하게
[math(\displaystyle \sum_{k=1}^n k^c = \sum_{k=0}^c \frac{B_k}{k!} c^{\underline{k-1}} n^{c+1-k})]
로 나타낼 수 있다. 오늘날 생성 함수를 이용해서 정의된 베르누이 수열을 기준으로 따지면 이 식의 베르누이 수열은 [math(B_k^-)]가 아닌 [math(B_k^+)]에 해당하므로
[math(\begin{aligned} \sum_{k=1}^n k^c &= \sum_{k=0}^c \frac{B_k^+}{k!} c^{\underline{k-1}} n^{c+1-k} = \sum_{k=0}^c \frac{(-1)^k B_k}{k!} c^{\underline{k-1}} n^{c+1-k} = \sum_{k=0}^c (-1)^k B_k \frac{c!}{k! (c-k+1)!} n^{c+1-k} \\ &= \sum_{k=0}^c \frac{(-1)^k}{c+1} \binom{c+1}k B_k n^{c+1-k} \end{aligned})]
[math(\begin{aligned} \sum_{k=1}^n \left( e^x \right)^k &= \frac {e^x \left(e^{nx}-1 \right)}{e^x-1} = \frac{e^{nx}-1}{1 - e^{-x}} = \frac{e^{nx}-1}x \frac x{1 - e^{-x}} = \frac 1x \left\{ \sum_{c=0}^\infty \frac{(nx)^c}{c!} - 1 \right\} \sum_{k=0}^\infty \frac{B_k^+ x^k}{k!} = \sum_{c=1}^\infty \frac{n^c x^{c-1}}{c!} \sum_{k=0}^\infty \frac{B_k^+ x^k}{k!} \\ &= \sum_{c=0}^\infty \frac{n^{c+1} x^c}{(c+1)!} \sum_{k=0}^\infty \frac{B_k^+ x^k}{k!} = \sum_{c=0}^\infty \sum_{k=0}^c \frac{B_k^+ x^k}{k!} \frac{n^{c-k+1} x^{c-k}}{(c-k+1)!} = \sum_{c=0}^\infty \sum_{k=0}^c \frac{(c+1)!}{k! (c-k+1)!} \frac{B_k^+ n^{c+1-k} x^c}{(c+1)!} \\ &= \sum_{c=0}^\infty \sum_{k=0}^c \binom{c+1}k \frac{B_k^+ n^{c+1-k}}{c+1} \frac{x^c}{c!} = \sum_{c=0}^\infty \left\{\sum_{k=0}^c \frac{(-1)^k}{c+1} \binom{c+1}k B_k n^{c+1-k} \right\} \frac{x^c}{c!} \end{aligned})]
한편
[math(\displaystyle \sum_{k=1}^n \left( e^x \right)^k = \sum_{k=1}^n e^{kx} = \sum_{k=1}^n \sum_{c=0}^\infty \frac{(kx)^c}{c!} = \sum_{c=0}^\infty \sum_{k=1}^n k^c \frac{x^c}{c!} = \sum_{c=0}^\infty \left(\sum_{k=1}^n k^c \right) \frac{x^c}{c!})]
위 두 식이 같아야하므로 [math(\displaystyle \sum_{k=1}^n k^c = \sum_{k=0}^c \frac{(-1)^k}{c+1} \binom{c+1}k B_k n^{c+1-k})]가 얻어진다.
[math(\begin{aligned} \sum_{k=1}^nk^0 &= \frac11B_0n^1 \\ &= n \\ \sum_{k=1}^n k^1 &= \frac12 \left( B_0 n^2 - 2 B_1 n \right) = \frac12 n^2 + \frac12n \\ &= \frac{n(n+1)}2 \\ \sum_{k=1}^n k^2 &= \frac13 \left( B_0 n^3 - 3 B_1 n^2 + 3 B_2n \right) = \frac13n^3 + \frac12n^2 + \frac16n = \frac{2n^3 + 3n^2 + n}6 \\ &= \frac{n(n+1)(2n+1)}6 = \frac{2n+1}3\frac{n(n+1)}2 \\ \sum_{k=1}^n k^3 &= \frac14 \left( B_0 n^4 - 4 B_1 n^3 + 6 B_2 n^2 \right) = \frac14n^4 + \frac12n^3 + \frac14n^2 \\ &= \left\{ \frac{n(n+1)}2 \right\}^2 \\ \sum_{k=1}^n k^4 &= \frac15 \left( B_0 n^5 - 5 B_1 n^4 + 10 B_2 n^3 + 5 B_4 n \right) = \frac15n^5 + \frac12n^4 + \frac13n^3 - \frac1{30}n = \frac{6n^5 + 15n^4 + 10n^3 - n}{30} \\ &= \frac{n(n+1)(2n+1) \left(3n^2+3n-1 \right)}{30} = \frac{2n+1}5{\left[2{\left\{\frac{n(n+1)}2\right\}}^2 - \frac13\frac{n(n+1)}2\right]}\\ \sum_{k=1}^nk^5 &= \frac16 \left( B_0n^6 - 6B_1n^5 + 15B_2n^4 + 15B_4n^2 \right) = \frac16n^6 + \frac12n^5 + \frac5{12}n^4 - \frac1{12}n^2 = \frac{2n^6 + 6n^5 + 5n^4 - n^2}{12} \\ &= {\left\{\frac{n(n+1)}2\right\}}^2\frac{2n^2+2n-1}3 = \frac43{\left[{\left\{\frac{n(n+1)}2\right\}}^3 -\frac14{\left\{\frac{n(n+1)}2\right\}}^2\right]} \\ \sum_{k=1}^nk^6 &= \frac17 \left( B_0n^7 - 7B_1n^6 + 21B_2n^5 + 35B_4n^3 + 7B_6n \right) = \frac17n^7 + \frac12n^6 + \frac12n^5 - \frac16n^3 + \frac1{42}n = \frac{6n^7 + 21n^6 + 21n^5 - 7n^3 + n}{42} \\ &= \frac{n(n+1)(2n+1)(3n^4 + 6n^3 - 3n + 1)}{42} = \frac{2n+1}7{\left[{4\left\{\frac{n(n+1)}2\right\}}^3-2{\left\{\frac{n(n+1)}2\right\}}^2+\frac13\frac{n(n+1)}2\right]} \\ \sum_{k=1}^nk^7 &= \frac18 \left( B_0n^8 - 8B_1n^7 + 28B_2n^6 + 70B_4n^4 + 28B_6n^2 \right) = \frac18n^8 + \frac12n^7 + \frac7{12}n^6 - \frac7{24}n^4 + \frac1{12}n^2 = \frac{3n^8 + 12n^7 + 14n^6 - 7n^4 + 2n^2}{24} \\ &= \frac{(n^4+2n^3+n^2)(3n^4+6n^3-n^2-4n+2)}{24} = 2{\left\{\frac{n(n+1)}2\right\}}^4 - \frac43{\left\{\frac{n(n+1)}2\right\}}^3 + \frac13{\left\{\frac{n(n+1)}2\right\}}^2 \end{aligned})]
6. 대한민국 교육과정 대한민국 고등학교 교육과정에서 수열의 합을 다룰 때 [math(c\ge4)] 범위는 안 다룬다. [math(c = 1,\,2,\,3)]일 때 공식을 유도하는 원리조차 다르며 애초에 이 공식을 외운다 하더라도
베르누이 수열 을 같이 외워두지 않으면 아무런 쓸모가 없으므로 자연수 거듭제곱의 합에 대해 이런 공식이 있다는 것 정도로만 알아두면 좋을 것이다.
거듭제곱 합의 공식에서 [math(c = -s)]를 대입하면
[math(\displaystyle \sum_{k=1}^n k^{-s} = \sum_{k=1}^n \frac1{k^s})]
이며 [math(n\to\infty)]이면 이는
제타 함수 의 형태와 완벽하게 똑같아진다.
앞서 베르누이 다항식으로 표현했던 식을 곱씹어보자.
[math(\begin{aligned} \sum_{k=1}^nk^c &= \frac{(-1)^{c+1}}{c+1}\{B_{c+1}(-n) - B_{c+1}(0)\} = \frac{(-1)^{c+1}}{c+1}B_{c+1}(-n) - \frac{(-1)^{c+1}}{c+1}B_{c+1}\\ &= \frac{(-1)^{c+1}}{c+1}\sum_{i=0}^{c+1}\binom{c+1}iB_i{\cdot}(-n)^{c+1-i} + \frac{(-1)^c}{c+1}B_{c+1} \\ &= \frac1{c+1}\sum_{i=0}^{c+1}\binom{c+1}i(-1)^iB_in^{c+1-i} + \frac{(-1)^c}{c+1}B_{c+1} \\ &= \frac1{c+1}\sum_{i=0}^{c+1}\binom{c+1}iB_i^+n^{c+1-i} + \frac{(-1)^c}{c+1}B_{c+1}\end{aligned})]
위 식에 [math(c = -s)]를 대입하면
[math(\begin{aligned} \sum_{k=1}^nk^{-s} &= \sum_{k=1}^n\frac1{k^s} \\ &= \frac1{1-s}\sum_{i=0}^{1-s}\binom{1-s}iB_i^+n^{1-s-i} + \frac{(-1)^s}{1-s}B_{1-s} \\ &= \frac1{1-s}\left\{B_0n^{1-s} + \frac{(1-s)}{1!}B_1^+n^{-s} + \frac{(1-s)(-s)}{2!}B_2n^{-s-1} + \cdots\right\} + \frac{(-1)^s}{1-s}B_{1-s}\end{aligned})]
위 식처럼 [math(n)]의 지수는 [math(1-s)]부터 점점 작아지는데, 제타 함수에서 [math(\Re(s)>1)]이므로 [math(\Re(1-s)<0)], 즉 [math(n)]의 지수 중 실수부는 모두 음수가 되므로 역수로 바꿔준다.
[math(\begin{aligned} \sum_{k=1}^n\frac1{k^s} &= \frac1{1-s}\sum_{i=0}^{1-s}\binom{1-s}i\frac{B_i^+}{n^{s+i-1}} + \frac{(-1)^s}{1-s}B_{1-s} \end{aligned})]
그리고 [math(n\to\infty)]의 극한을 취하면 [math(\dfrac1{n^{s+i-1}}\to0)]이므로 제1항이 사라지며
[math(\displaystyle \zeta(s) = \sum_{k=1}^\infty\frac1{k^s} = \frac{(-1)^s}{1-s}B_{1-s})]
이때 [math(s = -n)]를 대입하면 다음과 같이
베르누이 수열 을 통해 [math(0)] 이하의 정수로까지
해석적으로 확장 된 제타 함수가 얻어진다.
[math(\zeta(-n) = \dfrac{(-1)^n}{n+1}B_{n+1})]
혹은 [math(n)]에 [math(n-1)]을 대입하고 [math((-1)^nB_n = B_n^+)]로 나타낸
[math(B_n^+ = -n\zeta(1-n))]
으로 나타내기도 한다.
제타 함수 문서에서 제시된 [math(0)] 이하의 정수값 모두 위 관계식을 바탕으로 얻어진 것들이다. 일례로 위 관계식으로 소위
라마누잔합 이라고 알려진 값
[math(\zeta(-1) = -\dfrac12B_2 = -\dfrac12{\cdot}\dfrac16 = -\dfrac1{12})]
이 유도된다.
이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.