mir.pe (일반/어두운 화면)
최근 수정 시각 : 2024-11-10 15:09:49

대칭함수

기함수에서 넘어옴
해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수 실수( 실직선 · 아르키메데스 성질) · 복소수( 복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수 함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수( 동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수( 대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수( 변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴( 균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 특이점 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사( 어림)
수열· 급수 수열( 규칙과 대응) · 급수( 멱급수 · 테일러 급수( /목록) · 조화급수 · 그란디 급수( 라마누잔합) · 망원급수( 부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수( 이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점( 변곡점 · 안장점) · 매끄러움
평균값 정리( 롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법 · 경사하강법
적분 적분 · 정적분( /예제) · 스틸체스 적분 · 부정적분( 부정적분 일람) · 부분적분( LIATE 법칙 · 도표적분법 · /예제) · 치환적분 · 이상적분( 코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수· 벡터 미적분 편도함수 · 미분형식 · · 중적분( 선적분 · 면적분 · 야코비안) · 야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리( 발산 정리 · 그린 정리 변분법
미분방정식 미분방정식( /풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수( 주부) · 유수 · 해석적 연속 · 오일러 공식( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 거리공간 · 프레셰 공간 · 노름공간 · 바나흐 공간 · 내적공간 · 힐베르트 공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 바나흐 대수 · C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수( 분포이론)
조화해석 푸리에 해석( 푸리에 변환 · 아다마르 변환)
관련 분야 해석 기하학 · 미분 기하학 · 해석적 정수론( 1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론( 확률 변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학( 양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결) · 수리경제학( 경제수학) · 공업수학
기타 퍼지 논리 · 합성곱
}}}}}}}}} ||


1. 개요2. 정의3. 특수한 대칭함수
3.1. 홀함수3.2. 짝함수
4. 성질5. 여러 가지 함수에서6. 짝함수나 홀함수가 아닌 대칭함수

파일:디랙델타함수 시퀀스.svg
디랙 델타 함수를 정의하는 기반이 되는 함수들 중
[math(\boldsymbol{y})]축 대칭함수(짝함수)들의 예시

1. 개요

/ even and odd functions[1]

함수의 개형이 대칭을 이루는 함수를 뜻한다. 크게 홀함수[2](odd function)와 짝함수[3](even function)로 나뉜다.

참고로 2015 개정 교육과정에서는 홀함수와 짝함수라는 표현을 정식 명칭으로 사용하되 그 별칭으로 기함수와 우함수라는 표현을 혼용하도록 되어있다.

2. 정의

  • 함수 [math(y=f(x))]가 정의역의 모든 [math(x)]에 대하여
    • [math(f(-x)=f(x))]이면 짝함수(우함수)
    • [math(f(-x)=-f(x))]이면 홀함수(기함수)

홀함수는 다시 [math(f(x)>f(-x))]인 함수와 [math(f(x)<f(-x))]인 함수로 나뉜다. (단, [math(x>0)]) 아래는 이 둘의 예시이다. [math(\sin(x), \tan(x))]처럼 이 둘에 속하지 않는 함수들도 있다.
파일:namu_erf(x)_그래프.png 파일:브링근호_그래프_NeW.png
[math(f(x)>f(-x))] [math(f(x)<f(-x))]
오차함수 브링 근호

3. 특수한 대칭함수

역함수 이외에도, 고교 수학에서 배운 삼각함수 등을 포함한 매우 다양한 함수들이 대칭성을 가지고 있다.

홀함수이면서 동시에 짝함수인 함수는 상수함수 중 [math(f(x) = 0)]이 유일하다. 홀함수의 정의인 [math(f(-x)=-f(x))]와 짝함수의 정의인 [math(f(-x)=f(x))]를 모든 [math(x)]에 대해 만족시켜야 하므로 [math(f(-x)=-f(x)=f(x))]가 성립해야 하는데, [math(-f(x)=f(x))]를 모든 [math(x)]에 대해서 만족시키려면 [math(f(x)=0)]이 되어야 하기 때문이다.

기함수, 우함수 외에도 [math(x=2)]나 [math(2x+3y-1=0)] 등의 직선이나 [math((1,3))] 같은 점에 대칭인 함수들도 많이 존재한다. 대표적으로, 모든 1차함수는 자기자신과 [math(y = -\frac 1{y'} x+c)]에 대칭이고, 2차함수 [math(y=ax^2+bx+c)]는 축 [math(x=-\frac b{2a})]에 대칭이며, 삼차함수는 변곡점을 기준으로 점대칭이다.

3.1. 홀함수

3.2. 짝함수

4. 성질

[math(f(-x)=f(x))]에서 점 [math((x,\,y))]가 그래프 위의 점이면 점 [math((-x,\,y))]도 그래프 위의 점이기 때문에 짝함수의 그래프는 [math(y)]축에 대하여 대칭이고, [math(f(-x)=-f(x))]에서 점 [math((x,\,y))]가 그래프 위의 점이면 점 [math((-x,\,-y))]도 그래프 위의 점이기 때문에 홀함수의 그래프는 원점에 대하여 대칭이다.

짝함수의 경우 함수를 [math(x>0)]인 부분과 [math(x<0)]인 부분으로 나누어 각각을 정의역으로 하는 두 함수로 만들 때, 이들 각각의 치역이 서로 같다. 홀함수의 경우 이들 두 함수의 치역은 부호가 서로 반대이다. 즉 [math(y_1)]이 이들 두 함수 중 어느 한 함수의 치역에 속할 때, [math(-y_1)]은 다른 한 함수의 치역에 속한다.

수에서의 홀짝과는 특성이 다른데, 이는 다음과 같다. 여기서는 임의의 상수 [math(k, j)]에 대하여 임의의 홀함수를 [math(o_1(x), o_2(x))], 임의의 짝함수를 [math(e_1(x), e_2(x))]라고 하자.
홀함수를 [math(a)]가 홀수인 멱함수에, 짝함수를 [math(a)]가 짝수인 멱함수에 대응시키면 지수법칙에 따라 위의 곱하기(×)가 홀수(*)짝수 연산의 더하기(+)에, 나누기(÷)가 홀수(*)짝수 연산의 빼기(-)에 대응하는 것이라 생각하면 이해하기 쉽다.

정의역이 x=0x=0에 대해 좌우대칭인 임의의 함수를 아래와 같이 짝함수와 홀함수의 합으로 유일하게 나타낼 수 있다.
f(x)=f(x)+f(x)2+f(x)f(x)2f(x)=\dfrac{f(x)+f(-x)}{2}+\dfrac{f(x)-f(-x)}{2}

연속함수일 경우 멱급수로 전개할 수 있는 함수가 된다.[8] 홀함수는 홀수 지수의 다항함수의 선형결합으로, 짝함수는 짝수 지수의 다항함수의 선형결합으로 나타낼 수 있다.

4.1. 합성함수

합성함수의 경우, 홀함수[math(\circ)]짝함수이든 짝함수[math(\circ)]홀함수이든 무조건 짝함수가 된다. 그런데, 홀함수끼리 합성하면 홀함수가 된다. 함수의 합성을 일종의 곱셈으로 이해하면, 짝수를 임의의 자연수에 곱하면 짝수가 되고, 홀수 곱하기 홀수는 홀수가 되는 점에 대응시켜보면 쉽게 이해할 수 있다. 이것을 더 확장시켜 생각해 보면, 홀함수와 짝함수만을 합성시킨 합성함수의 경우 이들 중 짝함수가 1개 이상 있으면 짝함수이고, 홀함수만 합성되어 있으면 홀함수가 된다는 것을 알 수 있다.

임의의 함수를 합성할 때, 처음으로 합성되는 함수가 짝함수인 경우 무조건 짝함수가 된다. 그러나 짝함수가 처음으로 합성되는 함수가 아닌 경우이면 무조건 짝함수가 되지는 않는다.
또한 처음으로 합성되는 함수가 홀함수이더라도 무조건 홀함수가 되지는 않는다. 홀함수가 나중에 합성되더라도 마찬가지이다.
짝함수와 홀함수만을 합성하더라도 교환법칙이 성립한다는 것이 보장되지는 않는다. 예를 들어 [math(f(x)=x^2, g(x)=\sin(x))]일 때, [math(f(x))]는 짝함수이고 [math(g(x))]는 홀함수이지만 [math((f\circ g)(x) = \sin^2(x), (g\circ f)(x) = \sin(x^2))]이고 이 둘은 서로 다른 함수이다.

이것을 더 확장시키면, 임의의 함수를 합성할 때 합성되는 순서가 짝함수를 적어도 1개 포함한 1개 이상의 홀함수와 짝함수 → 임의의 함수일 때 짝함수가 된다는 것을 알 수 있다. 짝함수를 적어도 1개 포함한 1개 이상의 홀함수와 짝함수를 먼저 합성시킨 함수는 짝함수이므로 나중에 짝함수 → 임의의 함수 순으로 합성하는데, 이때 처음으로 합성되는 함수가 짝함수인 경우에 해당하므로 결국 짝함수가 되기 때문이다.

4.2. 미적분

홀함수를 미분하면 짝함수가 되고, 짝함수를 미분하면 홀함수가 된다. 부정적분의 경우 홀함수를 적분하면 짝함수가 되지만, 반대로 짝함수를 적분하는 경우에는 적분상수의 존재 때문에 홀함수가 되리라는 보장은 없다. 단, [math(y)]축 위의 한 점에 대하여 [math(y)]절편을 [math(C)]([math(C)]: 적분상수)로 갖는, [math((0, C))] 좌표에 점대칭인 그래프를 갖는다.

4.2.1. 정적분

대칭함수의 성질을 가장 잘 활용하는 곳은 다름 아닌 정적분인데, 이는 함수의 그래프가 대칭인 특성상 적분식이 간단해지기 때문이다.

적분구간 [math([-a,\,a])] (단, [math(a>0)])에 대해서 다음이 성립한다.
홀함수는 특성상 정적분 값은 0이 된다.[9][10] 그래서 정적분이 넓이를 구하기 위한 것이라면 절댓값을 취해 홀함수 부분은 0으로 날려버리고 짝함수 부분만 남긴 다음 위 대칭을 이용해 적분하면 편하다.

4.3. 역함수


===# 예제 #===
홀함수와 짝함수의 성질을 이용하는 문제가 2016학년도 수능 A형 20번에 출제되었다.

파일:2016 수능 A형 20번.jpg
[풀이]
----
[math(f(x))]는 홀함수, [math(g(x))]는 짝함수이므로 [math(h(x)=f(x)g(x))]는 홀함수이다. 이에 따라 [math(h'(x))]는 짝함수이다. 결국 다음이 성립한다.
[math(\begin{aligned}\displaystyle\int_{-3}^3(x+5)h'(x)\,{\rm d}x&=\int_{-3}^3xh'(x)\,{\rm d}x+5\int_{-3}^3h'(x)\,{\rm d}x\\&=\int_{-3}^3xh'(x)\,{\rm d}x+10\int_0^3h'(x)\,{\rm d}x\\&=0+10\left[h(x)\right]_0^3=10\\\\\therefore\left[h(x)\right]_0^3&=1\end{aligned})]
두 번째 등식은 [math(h'(x))]가 짝함수이므로

[math(\displaystyle\int_{-3}^0h'(x)\,{\rm d}x=\displaystyle\int_0^3h'(x)\,{\rm d}x)]

인 데서 성립하는 것이다. [math(h(x))]는 홀함수이므로 [math(h(0)=0)]에서

[math(\left[h(x)\right]_0^3=h(3)-h(0)=h(3)=1)]

5. 여러 가지 함수에서

5.1. 다항함수 역함수

다항함수 중 [math(f(x)=a_1x^{2n}+a_2x^{2n-2}+...+a_nx^2+a_{n+1})]와 같이 지수가 짝수인 항과 상수항으로만 구성된 함수는 짝함수, [math(f(x)=a_1x^{2n-1}+a_2x^{2n-3}+...+a_{n-1}x^3+a_nx)]와 같이 지수가 홀수인 항만으로 구성된 함수는 홀함수이다.
다항함수에서 더 확장해도 이 성질이 동일하게 적용된다. 즉 각 항의 지수가 음의 정수인 경우에도 양의 정수인 경우와 마찬가지이다.

정수 [math(a)]에 대해 [math(y=x^a)]인 함수를 멱함수라고 한다. 멱함수의 경우 함수가 짝함수인지 홀함수인지의 여부를 쉽게 알 수 있다. [math(y=x^2)] 또는 [math(y=x^4)]과 같이 [math(a)]가 짝수이면 짝함수이고, [math(y=\dfrac1x)] 또는 [math(y=x^3)]과 같이 [math(a)]가 홀수이면 홀함수이다.

멱함수를 이용하여 대칭함수의 성질을 보다 쉽게 이해할 수 있다.

5.2. 삼각함수

6. 짝함수나 홀함수가 아닌 대칭함수

짝함수는 y축 대칭이므로 짝함수의 그래프를 적절히 회전변환시키면 원점을 지나는, y축이 아닌 다른 직선에 대해서 대칭인 함수를 만들 수 있다. 또한 짝함수를 x축 방향으로 평행이동시키면 [math(x=k)] ([math(k)]는 실수)에 대칭인 함수를 만들 수 있다. 즉 임의의 짝함수 [math(y=e(x))]에 대해서 [math(y=e(x-k))]는 직선 [math(x=k)]에 대칭이다. y축 방향으로 평행이동시키면 대칭이 되는 직선이 변하지 않는다. 또한 회전변환+평행이동을 적절히 조합하면 원하는 직선에 대해 대칭인 함수를 만들 수 있다.

홀함수는 원점 대칭이므로, 홀함수를 x축 방향으로 a만큼, y축 방향으로 b만큼 평행이동시키면 점 (a, b)에 대칭인 함수를 만들 수 있다. 즉 임의의 홀함수 [math(y=o(x))]에 대해서 [math(y=o(x-a)+b)]는 점 (a, b)에 대해 대칭이다.


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는
문서의 r373
, 번 문단
에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r373 ( 이전 역사)
문서의 r ( 이전 역사)


[1] symmetric function이라는 것도 있기는 하지만 이것은 각 변수의 자리를 바꿔도 성립하는 다변수함수라는 다른 뜻이다. [2] 과거엔 일본식 한자어의 영향으로 기함수()라는 용어를 사용했다. [3] 과거엔 역시 마찬가지로 우함수()라는 용어를 사용했다. [iπ] [math(x < 0)] 범위에서는 [math(i\pi)]가 더해지므로 짝함수로 만들려면 실수부를 취해야 한다. [iπ] [iπ] [7] [math(|x|)]는 짝함수이므로 아래의 합성함수 문단에서 알 수 있는 내용이다. [8] 디리클레 함수는 완전 불연속인 짝함수이므로 멱급수 전개가 불가능하다. 푸리에 급수로는 전개 가능. [9] 그래서 홀함수의 [math((-infty, infty))] 구간열 적분을 구하는 것은 거의 금기 수준이다. 예를 들어 [math(x / (x^2+1))] [10] 단, 디리클레 함수는 홀함수가 아님에도 대칭 정적분 값이 0이다.

분류