mir.pe (일반/어두운 화면)
최근 수정 시각 : 2023-10-19 14:06:48

순환군

[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( /풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 대수적 무리수 · 초월수) · 초실수) · 복소수( 허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론 · 분해체
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마· 반군· 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론
대수 위상수학 연속변형성 · 사슬 복합체 · 호몰로지 대수학( 호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류 · 호프대수
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론 실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}

1. 개요2. 순환군
2.1. 치환 알고리즘2.2. 순열 합성함수의 예
3. S,3, 순환군
3.1. S,3, 순환군의 합성3.2. S,3, 순환군들
4. 관련 문서

1. 개요

군이 단일한 생성원을 가질 때, 즉 [math(a\in G)]가 존재하여 [math(G=\left\langle a\right\rangle)]일 때,
순환군(cyclic group) 이라 한다.
이 사실에 의해, 순환군은 기초정수론에 의해 모두 파악될 수 있다는 것을 알 수 있다.

2. 순환군

2.1. 치환 알고리즘

[math(\sigma_{123} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})]의 2행표기법에서 1행 표기법으로는 [math( \left( 123 \right) )]으로 표기할수 있다.
이것을 순열 생성 알고리즘으로 돌리면
(123) , (132) ,(231) ,(312),(213),(321)로 6개 나온다. 이걸 다시 2행표기법으로 바꾸면
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix})]을 얻을수 있다.

2.2. 순열 합성함수의 예

P={1,2,3}이고 집합P 에서 6개의 치환군(순열군,S,P,)은 다음과 같이 대칭성을 갖는 대칭군(S,3,)임을 조사할수 있다.
(123)
(231)
(312)
(321)
(132)
(213)
이제 S,3, 와 [math(\circ)]( 합성함수)는 군(group)의 공리를 만족시킬수 있다.
순열의 홀짝성(parity)에서 우(짝)순열과 우(짝)순열의 합성은 우순열이고 기(홀)순열과 기(홀)순열의 합성은 우순열이므로
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
위와같이 순환군의 첫번째 합성에서 대칭군 S,3, 의 교대군(alternating group) S,A, 를 조사할수 있다.
S,A, = [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})]

3. S,3, 순환군

P={1,2,3}이고 집합P 에서 6개의 치환군(순열군,S,P)은 다음과 같이 대칭군(S,3,,,)을 조사할수 있다.
(123) , (132) ,(231) ,(312),(213),(321)
이걸 다시 2행표기법으로 바꾸면
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix})]이다.

3.1. S,3, 순환군의 합성

[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} )]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] , [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} )]

순환군들은 다시 자기자신으로 돌아오고 순환한다.

3.2. S,3, 순환군들

위의 S,3, 순환군의 합성으로 부터 [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] 은 항등원임을 조사할수 있다. [2]
대칭군 S,3, 순환군 번호매김(numbering)
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] [math(\mathrm{I})]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] [math(\mathrm{II})]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})] [math(\mathrm{III})]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})],[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix})] [math(\mathrm{IV})]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] [math(\mathrm{V})]
[math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} )] [math( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} )] [math(\mathrm{VI})]
S,3,의 순환군 [math(\mathrm{III})]은 [math(\mathrm{IV})]과 같고 또한 교대군 S,A,와 같음을 조사할수 있다.
이어서
따라서 위수 [math(\lvert 3\rvert)]에서는 교대군이 일부 순환군들과 일치한다는 것을 조사할수 있다.

4. 관련 문서



[1] [math(G=\left\langle a\right\rangle)]에 대해, [math(\phi\ :\mathbb{Z}\rightarrow G)]를 [math(\phi\left( n\right)=a^{n})]로 정의하고 제1 동형정리를 적용하여 바로 얻는다. [2] \[참고 \](조선대학교 교육대학원)위수 60인 비아벨 단순군의 유일성 ,신 주 한 https://oak.chosun.ac.kr/bitstream/2020.oak/19132/2/%EC%9C%84%EC%88%98%2060%EC%9D%B8%20%EB%B9%84%EC%95%84%EB%B2%A8%20%EB%8B%A8%EC%88%9C%EA%B5%B0%EC%9D%98%20%EC%9C%A0%EC%9D%BC%EC%84%B1.pdf