[[대수학|대수학 Algebra ]]
|
||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
이론 | |||
기본 대상 | 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( /풀이 · 근( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술) | |||
수 체계 | 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 대수적 무리수 · 초월수) · 초실수) · 복소수( 허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간 | |||
다루는 대상과 주요 토픽 | ||||
대수적 구조 | ||||
군(group) | 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리 | |||
환(ring) | 아이디얼 | |||
체(field) | 갈루아 이론 · 분해체 | |||
대수 | 가환대수 · 리 대수 · 불 대수( 크로네커 델타) | |||
마그마· 반군· 모노이드 | 자유 모노이드 · 가환 모노이드 | |||
선형대수학 | 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자) | |||
정리·추측 | ||||
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결 | ||||
관련 하위 분야 | ||||
범주론 | 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론 | |||
대수 위상수학 | 연속변형성 · 사슬 복합체 · 호몰로지 대수학( 호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류 · 호프대수 | |||
대수기하학 | 대수다양체 · 층 · 스킴 · 에탈 코호몰로지 · 모티브 | |||
대수적 정수론 | 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리 | |||
가환대수학 | 스펙트럼 정리 | |||
표현론 | 실베스터 행렬 | |||
기타 및 관련 문서 | ||||
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 | }}}}}}}}} |
집합 [math(G)] 위에 닫혀있는 이항연산 [math(* : G\times G \to G)][1]이 결합법칙 [math(a*\left(b*c\right)=\left(a*b\right)*c)] 를 만족하면, 순서쌍 [math(\left(G,*\right))]를 반군(半群, Semigroup)이라 부른다. 여기서 결합법칙마저 빠지면 마그마(Magma)가 된다.
(예) 양의 정수와 덧셈은 반군을 이룬다. 여기서 ([math(0)]을 자연수로 본다면) 양의 정수의 집합 내에 덧셈의 항등원 [math(0)]이 없음을 알 수 있다.
다만 반군만으로는 쓸만한 성질이 없기 때문에, 대개는 항등원 [math(e\in G)][2]가 존재함을 추가로 가정해, [math(\left(G,*\right))]를 모노이드(monoid)로 만들어 다루기도 한다.
대표적인 반군으로 자연수 [math(\mathbb N)]가 있다. 이 때 연산은 더하기나 곱하기 중 원하는 것 하나로 주어진다.
[1]
[math(G)]의 두 원소 [math(a)], [math(b)]를 받아 [math(G)] 내에 있는 어떤 값 [math(a*b)]를 내놓는 함수.
[2]
[math(G)]의 임의의 원소 [math(a)]에 대해 [math(a*e = e*a = a)] 라는 성질을 만족하는 특수한 원소.