최근 수정 시각 : 2024-09-09 07:14:46
관련 문서:
헤론의 공식
1 . 개요2 . 증명3 . 브레치나이더 공식4 . 기타Brahmagupta's formula · Brahmagupta
公
式
원에 내접하는 평면 위의
사각형 의 네 변의 길이로 사각형의 넓이를 구하는 공식으로, 네 변의 길이를 각각 [math(a)], [math(b)], [math(c)], [math(d)]라 하면 넓이는 아래와 같다.
[math(\displaystyle \sqrt{(s-a)(s-b)(s-c)(s-d)} \quad \left(s=\dfrac{a+b+c+d}{2} \right) )]
인도의 수학자인
브라마굽타 (ब्रह्मगुप्त)가 발견했다.
그림과 같이 네 변의 길이가 [math(a)], [math(b)], [math(c)], [math(d)]인 내접사각형 [math(\square \rm ABCD)]에 대해, [math(\angle{\rm BAD}=\theta)]라 하고, 이 사각형의 넓이를 [math(S)]라 하자.
[math(\displaystyle S=\triangle {\rm ABD}+\triangle {\rm CBD} )]
인데, 원에 내접하는 사각형에서 마주보는 대각의 합은 [math(\pi)]이므로
[math(\angle{\rm BCD}=\pi-\theta)]
이다. 따라서
[math(\displaystyle S=\frac{1}{2}ad\sin{\theta}+\frac{1}{2}bc\sin{(\pi-\theta)} )]
한편, 삼각함수 항등식 [math(\sin{(\pi - x)}= \sin{x})]이므로
[math(\displaystyle S=\frac{1}{2}(ad+bc)\sin{\theta} )]
이때,
코사인 법칙 을 사용하여
[math(\displaystyle {\overline{\rm BD}}^{2}=a^2+d^2-2ad\cos{\theta}=b^2+c^2-2bc\cos{(\pi-\theta)} )]
삼각함수 항등식 [math(\cos{(\pi - x)}= -\cos{x})]를 이용하면,
[math(\displaystyle a^2+d^2-2ad\cos{\theta}=b^2+c^2+2bc\cos{\theta} )]
이상에서
[math(\displaystyle \cos{\theta}=\frac{1}{2}\frac{a^2+d^2-b^2-c^2}{ad+bc} )]
한편, 삼각함수 항등식 [math(\sin^{2}{\theta}+\cos^{2}{\theta}=1)]을 이용하면,
[math(\displaystyle \begin{aligned} \sin{\theta}&=\sqrt{1-\cos^{2}{\theta}} \\&=\sqrt{1-\frac{(a^2+d^2-b^2-c^2)^2}{(2ad+2bc)^2}}\\&=\sqrt{\frac{(2ad+2bc+a^2+d^2-b^2-c^2)(2ad+2bc-a^2-d^2+b^2+c^2)}{4(ad+bc)^2}} \\ &=\sqrt{\frac{\left[ (a+d)^2-(b-c)^2 \right] \left[ -(a-d)^2+(b+c)^2) \right]}{4(ad+bc)^2}} \\&=\sqrt{\frac{(a+b-c+d)(a-b+c+d)(a+b+c-d)(-a+b+c+d)}{4(ad+bc)^2}}\\&=\sqrt{\frac{16(s-a)(s-b)(s-c)(s-d)}{4(ad+bc)^2}} \quad \biggl(s=\frac{a+b+c+d}{2} \biggr)\\&=2 \sqrt{\frac{(s-a)(s-b)(s-c)(s-d)}{(ad+bc)^2}} \end{aligned} )]
따라서
[math(\displaystyle \begin{aligned} S &=\frac{1}{2}(ad+bc)\sin{\theta}\\&=\frac{1}{2}\cdot(ad+bc)\cdot 2 \sqrt{\frac{(s-a)(s-b)(s-c)(s-d)}{(ad+bc)^2}} \\&=\sqrt{(s-a)(s-b)(s-c)(s-d)} \end{aligned} )]
3. 브레치나이더 공식Formel von Bretschneider · Bretschneider
公
式
브라마굽타 공식을
카를 안톤 브레치나이더 가 임의의 사각형으로 일반화시킨 것이다.
[math(\displaystyle \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd \cos^2 \theta} \quad \left(s=\dfrac{a+b+c+d}{2} \right) )]
여기서 [math(\theta)]는 사각형 내의 마주보는 두 각의 크기의
산술 평균 이다.
브라마굽타 공식은 저기서 [math(\theta = \pi/2)]인 경우이다.
브라마굽타 공식에서 [math(d=0)]인 경우,
헤론의 공식 과 그 형태가 일치한다. 삼각형은 언제나 외접원이 존재하므로, 이론적으로는 헤론의 공식은 브라마굽타 공식의 축소판이라고 볼 수도 있겠다.