그림과 같이 [math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대해 [math(\angle\alpha)]를 [math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대한 원주각이라 하며, 이때, [math(\angle\beta)]를 [math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대한 중심각이라 한다. 원주각과 중심각의 관계는 아래와 같다.
[math(\angle\alpha = \dfrac{\angle\beta}2)]
참고로 이 문서의 각은
호도법으로 정의된 것을 사용하며, 가령 각의 기호 [math(\theta)]에 대하여
[math(underlinetheta = theta/{rm rad})]이다. 해당 수치에 [math({180\degree}/\pi)]를 곱해주면,
육십분법으로 정의된 각을 알 수 있다. 또한 닮음 기호는 국제적으로 통용되는 [math(\sim)]을 썼다.
[math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대한 원주각 [math(\rm\angle APB)]를 고려하고, 보조선으로 지름 [math(\rm\overline{PQ})]를 사용하자. 이때, 원의 반지름으로써 [math(\overline{\rm OP} = \overline{\rm OA} = \overline{\rm OB})]가 성립하므로 [math(\rm\triangle PAO)], [math(\rm\triangle POB)]는 이등변삼각형임을 알 수 있다. 따라서
[math(\begin{aligned} \rm\angle APO &= \rm\angle PAO \\ \rm\angle OPB &= \rm\angle OBP\end{aligned})]
가 성립한다. 그런데, [math(\rm\triangle PAO)]의 [math(\rm\angle AOP)]에 대한 외각은 [math(\rm\angle AOQ)]이고,
[math(\rm\angle AOQ = \angle APO + \angle PAO = 2\angle APO)]
[math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대한 원주각 [math(\rm\angle APB)]를 고려하자. 원의 반지름으로써 [math(\overline{\rm OP} = \overline{\rm OA} = \overline{\rm OB})]가 성립하므로 [math(\rm\triangle OAB)], [math(\rm\triangle POB)]는 이등변삼각형임을 알 수 있다. 따라서 [math(\rm\triangle POB)]에 대하여
[math(\rm\angle OPB = \angle OBP)]
이 성립한다. 또한, [math(\rm\angle POB)]의 외각은 [math(\rm\angle AOB)]이고,
[math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]에 대한 원주각 [math(\rm\angle APB)]를 고려하고, 보조선으로 반지름 [math(\rm\overline{OP})]를 사용하자. 이때, 원의 반지름으로써 [math(\overline{\rm OP} = \overline{\rm OA} = \overline{\rm OB})]가 성립하므로 [math(\rm\triangle PAO)], [math(\rm\triangle POB)]는 이등변삼각형임을 알 수 있다. 따라서 [math(\rm\triangle OAP)]와 [math(\rm\triangle OBP)]는 이등변삼각형이다. 따라서 다음이 성립한다:
위 그림과 같이 원에 내접하는 사각형 [math(\rm APBQ)]를 고려하자. 이때, [math(\theta)]와 [math(\theta')]는 [math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AB}\:)]의 원주각이다. 따라서 두 원주각에 대한 중심각의 합은 [math(2\pi{\rm\,rad})]이 되므로
[math(\theta + \theta' = \pi{\rm\,rad})]
의 결론을 얻는데, 이는 원에 내접하는 사각형의 두 대각의 합은 [math(\bm\pi{\bf\,rad})]이 됨을 보여준다.
위 그림과 같이 원에 내접하는 [math(\rm\square ABCD)]과 이 사각형의 [math(\rm\angle CAB)]의 외각 [math(\rm\angle PAC)]를 고려하면
위 그림과 같이 원 외부의 점 [math(\rm P)]에서 그은 원의 접선을 고려해보자. 이때, 해당 접선의 접점은 [math(\rm T)]이다. 또, 접점을 지나는 한 현을 고려할 때, 이 현에 대한 [math(\:\overset{\Large\mathclap\frown}{\phantom{\scriptsize;\!}}\clap{AT}\:)]에 대한 원주각 [math(\rm\angle AQT)]는 [math(\rm\angle PTA)]와 같다. 즉,
[math(\rm\angle AQT = \angle PTA)]
가 성립한다.
이것의 증명은 아래와 같이 할 수 있다.
점 [math(\rm Q)]를 [math(\rm Q')]으로 옮겨도 그 원주각은 같으므로
[math(\rm\angle AQT = \angle AQ'T)]
이때, [math(\rm\overline{TQ'})]이 원의 지름이라면, 지름에 대한 원주각 [math(\angle{\rm TAQ'} = \cfrac\pi2{\rm\,rad})]임에 따라, [math(\rm\triangle TAQ')]은 직각삼각형임을 알 수 있다. 또한, 원의 지름과 접선은 수직으로 만남에 따라 [math(\angle{\rm PTQ'} = \cfrac\pi2{\rm\,rad})]이다. 따라서 다음이 성립한다.
현행 대한민국 교육과정에서는 중학교 3학년 2학기에서도 맨 마지막에 다루게 된다. 단원 특성 상 3년간 배웠던 기하학의 내용인 합동・닮음 등의 많은 내용들을 써먹어야 하기 때문에 3년 간 본인이 학습했던 기하학 실력을 알 수 있는 단원이며, 이에 많은 학생들이 어려워하는 단원이다. 중학교 2학년 때 배우는 삼각형의
외심과
내심,
닮음보다도 어려우며, 웬만한 고1 수학보다도 어렵다. 중학교에서 배우는 수학 내용 중 가장 어렵다고 봐도 과언이 아닐 정도.
교육과정 자체는 중학교 교육과정이지만 수능 4점 도형문제에서 숨쉬듯 써먹기 때문에 사실상 고등학교 과정에도 필수라고 보면 된다.