합성수가 아닌 정수를 일컫는 소수(素數)에 대한 내용은 소수(수론) 문서 참고하십시오.
수와
연산 Numbers and Operations |
|||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
<colbgcolor=#765432> 수 체계 | 자연수 ( 수학적 귀납법 · 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 ( 정수가 아닌 유리수) · 실수 ( 무리수 · 초월수) · 복소수 ( 허수) · 사원수 | |
표현 | 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법( 자연어 수 표기법 · 과학적 표기법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 · BEAF · 버드 표기법) · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 { 유한소수 · 무한소수 ( 순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수 | ||
연산 | 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 ( 이중근호) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 · 이진로그) · 검산 · 연산자 · 교환자 | ||
방식 | 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자 | ||
용어 | 이항연산( 표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
기타 | 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기( 바퀴 이론) · 0의 0제곱 | }}}}}}}}} |
중학교 수학 용어 | ||
{{{#!wiki style="margin: -0px -10px -5px; min-height: 26px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -2px -12px" |
<colbgcolor=#2667a9><colcolor=white> ㄱ | <colbgcolor=#fff,#191919> 각뿔대 · 거듭제곱 · 결합법칙 · 계급 · 계급의 크기 · 계수 · 교각 · 교선 · 교점 · 교환법칙 · 그래프 · 근 · 근의 공식 · 근호 · 기울기 · 꼬인 위치 · 꼭짓점 |
ㄴ | 내각 · 내심 · 내접 · 내접원 | |
ㄷ | 다면체 · 다항식 · 단항식 · 닮음 · 닮음비 · 대각 · 대변 · 대입 · 대푯값 · 도수 · 도수분포다각형 · 도수분포표 · 동류항 · 동위각 · 두 점 사이의 거리 · 등식 | |
ㅁ | 맞꼭지각 · 무게중심 · 무리수 · 무한소수 · 미지수 · 밑 | |
ㅂ | 반비례 · 방정식 · 변량 · 변수 · 부등식 · 부채꼴 · 분모의 유리화 · 분배법칙 · 분산 | |
ㅅ | 사건 · 사분위수 · 사인 · 산점도 · 산포도 · 삼각비 · 삼각형의 닮음 조건 · 삼각형의 합동 조건 · 상관관계 · 상대도수 · 상수항 · 상자그림 · 서로소 · 소수 · 소인수 · 소인수분해 · 수선의 발 · 수직선 · 수직이등분선 · 순서쌍 · 순환마디 · 순환소수 · 실수 | |
ㅇ | 양수 · 양의 유리수 · 양의 정수 · 엇각 · 역수 · 연립방정식 · 완전제곱식 · 외각 · 외심 · 외접 · 외접원 · 원뿔대 · 원점 · 원주각 · 유리수 · 유한소수 · 음수 · 음의 유리수 · 음의 정수 · 이차방정식 · 이차함수 · 이항 · 인수 · 인수분해 · 일차방정식 · 일차부등식 · 일차식 · 일차함수 | |
ㅈ | 작도 · 전개 · 절댓값 · 접선 · 접점 · 접한다 · 정다면체 · 정비례 · 정수 · 제1사분면 · 제2사분면 · 제3사분면 · 제4사분면 · 제곱근 · 좌표 · 좌표축 · 좌표평면 · 줄기와 잎 그림 · 중근 · 중선 · 중심각 · 중앙값 · 중점 · 증명 · 지수 · 직교 · 직선의 방정식 | |
ㅊ | 차수 · 최댓값 · 최빈값 · 최솟값 · 축 | |
ㅋ | 코사인 | |
ㅌ | 탄젠트 | |
ㅍ | 편차 · 평각 · 평행이동 · 포물선 · 표준편차 · 피타고라스 정리 | |
ㅎ | 할선 · 함수 · 함숫값 · 합성수 · 항 · 항등식 · 해 · 현 · 호 · 확률 · 활꼴 · 회전체 · 회전축 · 히스토그램 | |
기타 | x좌표 · y좌표 · x축 · y축 · x절편 · y절편 |
1. 개요
小 數 / decimal notation자연수가 아닌 수를 점을 찍어서 나타내는 방법.
원래는 십진법에서 쓰이는 10개의 숫자(0~9)를 이용해 실수를 [math(b_0b_1b_2b_3\cdots.a_0a_1a_2a_3a_4a_5\cdots,\,a_i \in\mathbb N,\,0\le a_i\le9)] 형식으로 표현하는 표기법을 의미하며 수(number)자체를 뜻하지 않는다. 따라서 영어에서 소수는 십진법(decimal notation)과 같다.
소수점 아래 자릿수가 무한하냐 아니냐에 따라 무한소수, 유한소수로 구분하며, 무한소수는 다시 특정 자릿수가 반복되는 순환소수와 그렇지 않은 비순환소수[1]로 나뉘고, 순환소수는 다시 소수점 첫째자리부터 자릿수가 반복되는 순순환소수, 소수점 둘째자리 이하부터 반복되는 혼순환소수로 나뉜다.
무리수는 항상 비순환소수이며, 유리수(분수)는 (기약분수꼴로 나타냈을 때의) 분모에 따라 유한한 소수표현을 갖거나 순환소수이다. 중학교 2학년 올라가면 첫 단원에 나온다. 무리수와 유리수[2]를 합쳐 실수가 된다.
대수적인 방법으로 구할 수 없는 수는 무리수이면서 그중에서도 초월수에 해당한다. 예를 들어서, 0.1234567891011121314...와 같은 소수가 있을 때, 이 소수는 소수부분이 1부터 시작하여 1씩 큰 자연수를 이어 적어나가는 규칙이 있지만, 이 수를 근으로 갖는 계수가 유리수인 다항식이 없다. 0.110100100010000100000...와 같은 소수도 마찬가지 이유로 초월수에 해당한다.
대부분의 사람들이 2, 3, 5, 7와 같은 ' 소수(素數)'와 이 '소수(小數)'를 문맥 없이는 구분하기 어려워하나, 이는 '소수(素數)'를 [소수]로 잘못 읽어서 생기는 문제로 원래 이 '소수(小數)'의 발음은 [소ː수], 소수(素數)의 발음은 [소쑤]라서 발음으로 구별이 된다. 굳이 따지자면 동철이음이의어 관계인 셈. 그래서 가끔 소수(素數)에 사이시옷을 넣는 예외 한자어로 인정해 '솟수'라는 표기를 쓰자는 주장이 나오기도 한다.
2. 기호
처음으로 소수를 나타내기 위한 기호를 사용한 사람은 네덜란드 수학자 시몬 스테빈(Simon Stevin, 1548-1620)이다. 스테빈은 소수점 대신 숫자 위에 작은 숫자를 적어 자릿수를 표기했다. 3.14를 나타내기 위해 [math(\overset{\tiny0}3\overset{\tiny1}1\overset{\tiny2}4)]라고 쓰는 식이다.현재 쓰이는 소수 기수법은 다음 셋으로 나뉜다. 예시 수는 12345.67890(일만 이천삼백사십오 점 육칠팔구영)이다.
- 국제단위계( ISO 31-0): 소수점을 . 또는 ,로 표기하고 자릿수는 띄어쓰기[3]로 표기한다.
- 예시) 12 345.678 90
- 예시2) 12 345,678 90
- 유럽: 소수점을 ,로 표기하고 자릿수는 .로 표기한다. 국제단위계와는 달리 소수점 이하에는 자릿수를 표기하지 않는다.
- 예시) 12.345,67890
- 유럽 외 지역: 소수점을 .로 표기하고 자릿수는 ,로 표기한다. 국제단위계와는 달리 소수점 이하에는 자릿수를 표기하지 않는다.
- 예시) 12,345.67890
이 때문에 날짜 표기 체계와 더불어 혼선이 빚어지는 경우가 종종 일어난다.
3. 소수의 종류
3.1. 유한소수
자세한 내용은 유한소수 문서 참고하십시오.3.2. 무한소수
자세한 내용은 무한소수 문서 참고하십시오.
[1]
예를 들면
원주율,
자연로그의 밑,
오메가 상수 등.
[2]
유리수는 무한소수 중 일부인 순환소수와 유한소수에 걸쳐있다는 점에 주의.
[3]
정확히는
줄바꿈이 없는 띄어쓰기