mir.pe (일반/어두운 화면)
최근 수정 시각 : 2023-09-23 07:17:13

연분수

근사분수에서 넘어옴

연산
Numbers and Operations
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#765432> 수 체계 자연수 ( 수학적 귀납법 · 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 ( 정수가 아닌 유리수) · 실수 ( 무리수 · 초월수) · 복소수 ( 허수) · 사원수
표현 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법( 자연어 수 표기법 · 과학적 표기법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 · BEAF · 버드 표기법) · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 { 유한소수 · 무한소수 ( 순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수
연산 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 ( 이중근호) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 · 이진로그) · 검산 · 연산자 · 교환자
방식 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자
용어 이항연산( 표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기( 바퀴 이론) · 0의 0제곱 }}}}}}}}}

1. 개요2. 전개 방법3. 근사분수4. 여러 무리수의 연분수 전개5. 기타

1. 개요

/ continued fraction

분모가 정수와 분수의 합으로 연달아 표기되는 분수. 일반적으로 유리수는 두 정수의 비로 나타낼 수 있고 무리수는 그럴 수 없지만, 연분수라는 특수한 분수를 사용하면 무리수도 분수로 나타낼 수는 있다. 다만, 어떤 수를 연분수로 나타낼 때, 유리수라면 언젠가는 끝이 나지만 무리수라면 연분수가 한없이 이어진다. 후술했듯이 어떤 무리수의 근사치인 유리수, 즉 근사분수를 찾기 위해서도 연분수가 쓰인다.

2. 전개 방법

가장 기본적으로는, 전개하고자 하는 수를 정수 부분과 소수 부분으로 나눈 뒤, 그 소수 부분의 역수를 취하는 조작을 반복한다. [math(\dfrac{12}7)]를 연분수로 전개해보자.

[math(\dfrac{12}7 = 1+\dfrac57 = 1+\cfrac1{\cfrac75} = 1+\cfrac1{1+\cfrac25} = 1+\cfrac1{1+\cfrac1{\cfrac52}} = 1+\cfrac1{1+\cfrac1{2+\cfrac12}} )]

이 방법을 쓰면 연분수의 모든 분자 자리가 1이 되는데, '여러 무리수의 연분수 전개' 문단에서 보듯이 꼭 이렇게 해야만 수학적으로 옳은 것은 아니다.

다만, 일반적으로 분자를 1로 고정하는 것은 다른 표기법과의 호환이 되기 때문에 권장되는 편이다. 예를 들어서 위에 있는 [math(\displaystyle \frac{12}{7})]의 경우는 [math(\left[1;1,2,2\right])]나 [math(\left<1,1,2,2\right>)]로 표기할 수 있다.
또한, 만약 반복되는 순환마디가 존재한다면, 순환소수와 마찬가지로 해당하는 순환마디에 윗줄을 그어서 표기한다. 예를 들어서 [math(\sqrt{3})]의 경우는 [math(\left[1;\overline{1, 2}\right])]나 [math(\left<1,\overline{1, 2}\right>)]로 표기할 수 있다.

여기에 만약 어떤 연분수 [math(\xi)]가 순환마디를 가지는 순수 순환연분수[1]라면 이 연분수는 이차 무리수[2]이며, 동시에 [math(\xi>1)]이고, [math(\overline{\xi})][3]는 [math(-1<\overline{\xi}<0)]을 만족한다.

3. 근사분수

convergents ·

앞서 설명했듯이, 전개하고자 하는 수를 정수 부분과 소수 부분으로 나눈 뒤, 그 소수 부분의 역수를 취하는 조작을 반복하여 얻는 연분수의 모든 분자 자리는 1이 된다. 이렇게 연분수로 전개해가다가, 특별히 큰 수가 등장하면 거기에서 전개를 멈추고, 그 수가 나오기 바로 전까지의 연분수를 계산해서 얻는 값이 해당 무리수의 근사치인 유리수가 된다. 이 수를 근사분수라고 한다. 그 '특별히 큰 수'가 크면 클수록 정밀도 높은 근삿값이 나온다. 예를 들어 [math(\pi)]의 근사치인 유리수를 찾아보자. [math(\pi)]는 무리수이므로 [math(\pi)]를 이 방법으로 전개하면 다음과 같이 한없이 이어진다.

[math(\pi=3+\cfrac1{7+\cfrac1{15+\cfrac1{1+\cfrac1{292+\cfrac1{1+\cfrac1{\ddots}} }} }} )]

여기에서 292라는 특별히 큰 수가 등장하였으므로, 그 바로 전에서 끊은 후 그 값을 계산하면 된다. 곧,

[math(3+\cfrac1{7+\cfrac1{15+\cfrac1{1} }} = \dfrac{355}{113} (\approx 3.1415929204) )]

가 바로 [math(\pi)]의 근삿값이다. 참고로 [math(\pi\approx 3.1415926536)]이다.

물론, 연분수 계산을 많이 진행할수록 값은 정확해지겠지만 그 계산 결과는 매우 복잡해질 것이다. 적당한 선에서 간결한 근삿값을 얻고 싶다면, 연분수 계산 도중 특별히 큰 수가 나오면 거기서 끊어 버리면 된다.

한편, 극히 예외적인 경우로는 황금수

[math(\varphi = \dfrac{1+\sqrt5}2 = 1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{1+\cfrac1{\ddots}} }} }} )]

가 있다. 모든 정수 부분에 계속해서 1만 나오는데, 이 방법으로는 [math(\varphi)]의 근사치가 되는 마땅한 유리수를 찾을 수 없다. 이런 경우는 달리 찾아볼 수가 없다.[4]

짝수 근사분수는 실제 값보다 작고 홀수 근사분수는 실제 값보다 크다.

4. 여러 무리수의 연분수 전개

아래는 각각 [math(sqrt2)], [math(sqrt3)], 황금수, 원주율, 자연로그의 밑, 오메가 상수, 겔폰트-슈나이더 상수, 겔폰트 상수의 연분수 전개이다. 뒤의 대괄호로 묶인 부분은 다른 표기법이다.

5. 기타

수를 넣으면 연분수로 전개시켜 주는 사이트도 있다. #
모든 무한연분수는 무리수이고(단, 분자에 0만 반복되는 경우는 제외한다.), 모든 유한연분수는 유리수이다.

여담으로, 2부터 99까지의 제곱수가 아닌 수의 제곱근을 연분수로 만들었을 경우, 가장 순환마디가 큰 수는 [math(\sqrt{94})]의 15자리이며 그 다음은 [math(\sqrt{76})]의 12자리이다.
[1] 괄호 표기법 기준으로 첫번째 숫자, 혹은 두번째 숫자부터 순환마디인 연분수 [2] 2차방정식의 해가 되는 무리수를 의미 [3] 이차방정식의 켤레근 [4] 여기에서 중간을 끊어 버리면, 피보나치 수열의 항의 비율 [math(F_n/F_{n-1} )]이 된다. 바꿔 말하면, [math(F_n/F_{n-1} )]은 극한값인 [math(\varphi)]로 매우 느리게 수렴한다. 상대오차 기준으로 [math(\varphi)]와 [math(2584/1597)]가 [math(\pi)]와 [math(355/113)]보다 약간 떨어지는 정밀도로, 정밀도를 높이려면 어마어마하게 큰 피보나치 수가 필요하단 걸 알 수 있다. 피보나치 수열 참고. [5] [math(W)]는 람베르트 W 함수이다.