1. 개요
Hertz진동수의 단위로 기호는 [math(\rm Hz)][1][2]이고 차원은 [math(\sf T^{-1})]이다. 명칭은 독일의 과학자 하인리히 루돌프 헤르츠(Heinrich Hertz)의 이름에서 유래되었다.[3] 어떤 주기를 갖는 반복 현상에 대하여, 1초 동안 주기가 몇 번(횟수) 반복되는지를 의미하는 단위이다.
헤르츠의 정의는 세슘-133 초미세 전이 주파수 [math(Deltanu_{rm Cs})]의 [math(1/9\,192\,631\,770)]와 같다.
2. 상세
1 Hz는 일정한 주기로 반복되는 어떤 현상에 대하여 '초당 주기가 1회'라는 것을 의미한다. 1 Hz의 대표적인 예로 아주 정확히 맞는 시계의 초침을 들 수가 있다.[4] 저 '일정한 주기로 반복되는 현상'이라는 조건이 아주 중요한데, 주기와는 상관이 없는 현상[5]에는 Hz를 쓸 수 없고, 그런 경우에는 차원이 같은 [math(\rm s^{-1})]을 쓰거나 [math(rm Bq)]처럼 차원이 같은 아예 별개의 단위가 쓰인다.정의에 '주기의 횟수'라는 무차원량을 내포하고 있는데 국제단위계에서 '횟수'는 별도의 단위를 쓰지 않는다는 합의가 있기 때문에 다른 물리량을 이용한 표기가 다소 까다롭다. 과거엔 주기의 횟수에 '사이클'([math(\rm cycle)])이라는 단위를 쓰고 있었으므로 일단 이 방식에 따라 나타내보면, 해당 물리량을 [math(n)]으로 나타냈을 때 진동수 [math(\nu)]는 [math(\nu = \dfrac n{\rm cycle}\dfrac1t)]로 나타낼 수 있고,[6] [math(\dfrac n{\rm cycle})]은 단위를 포함하지 않는 수치일 뿐이므로 진동수의 단위를 분석해보면 [math({\rm Hz} = {\rm1/s} = {\rm s^{-1}})]이 된다. 그러나 엄밀하게 따지면 두 단위는 질적으로 엄연히 다르다. 특히 Hz가 쓰이는 분야는 회전 운동과 연관이 있는데, 기본적으로 주기를 갖는 함수는 푸리에 해석을 통해 삼각함수의 합으로 표현되기 때문이다. 회전 운동에서 '주기의 횟수'란 곧 '바퀴의 횟수'와도 같으며 1바퀴는 곧 [math(2\pi{\rm\,rad})]이므로 회전량을 [math(\theta)]로 나타내면 [math(\dfrac n{\rm cycle} = \dfrac\theta{2\pi{\rm\,rad}})]이다.[7] 앞선 [math(\nu)]의 정의에 위 식을 대입하면 [math(\nu = \dfrac\theta{2\pi{\rm\,rad}}\dfrac1t \Leftrightarrow (2\pi{\rm\,rad})\nu = \dfrac\theta t)]인데 [math(\dfrac\theta t)]는 곧 각진동수 [math(\omega)]와 같으므로 [math(\omega = (2\pi{\rm\,rad})\nu)], 즉 진동수에 [math(2\pi{\rm\,rad})]을 곱하면 각진동수가 된다는 성질이 자연스럽게 유도되며, 이 성질은 진동수가 단순히 [math(\rm s^{-1})] 단위라는 것으로는 매끄럽게 유도되지 않는다.
또한 디랙 상수 [math(\hbar)] 역시 빛의 에너지 공식 [math(E = h\nu)]로부터 자연스럽게 유도되는데, [math(\nu = \dfrac\omega{2\pi{\rm\,rad}})]이므로 [math(E = h\nu = h\dfrac\omega{2\pi{\rm\,rad}} = \dfrac h{2\pi}\omega/{\rm rad} = \hbar\omega/{\rm rad})].
Hz의 역수는 곧 1 주기(period, cycle)에 걸리는 시간(초)을 의미하므로 진동수는 주기와 역수 관계에 있음이 자명하다. 예를 들어 1초 동안에 1000개의 파동이 지나가면 1000 Hz이며, 역으로 1주기에 걸리는 시간은 1/1000 s이다.
초당 1,000 사이클을 킬로 사이클(kilo cycle; kc), 100만 사이클을 메가 사이클(mega cycle; Mc), 10억 사이클을 기가 사이클(giga cycle; Gc)로 표시한다. 1960년대 이후로 SI에서 사이클이란 단위 명칭을 인정하지 않음에 따라 현재는 전 세계적으로 헤르츠가 더 널리 쓰이고 있다.
3. 실생활에서
디지털 음향 분야에서도 음원을 PCM으로 샘플링할 때, 초당 샘플 수를 44.1 kHz, 48 kHz, 96 kHz와 같이 표기한다분야가 달라서 잘 쓰이지는 않지만, BPM과 상호변환이 가능하다. 1 Hz = 60 BPM[8]이다.
화면 주사율을 표기하는데 사용된다. 이 때는 기기가 최대로 표현할 수 있는 FPS와 대응된다. 예를 들어 최대 주사율이 90Hz인 기기는 1초에 90번 리프레쉬를 할 수 있다고 보면 된다.
4. 사이클
1파장은 1사이클에 1:1 대응한다. |
5. 관련 문서
[1]
사람 이름에서 따온 단위기 때문에 h는 대문자로, z는 소문자로 쓰는 게 표준이다. 거기에 통상
SI 접두어를 붙이게 될 경우가 대부분이기 때문에 은근히 표기가 자주 틀리게 되는 단위이기도 하다. kHz의 첫 글자를 소문자로, MHz의 첫 글자를 대문자로 쓰는 까닭이 이것이다.
[2]
러시아에서는
키릴 문자로 Гц라고 표기하곤 한다.
[3]
헤르츠 이전에 조지프 헨리(Joseph Henry, 1797~1878)의 이름에서 딴
인덕턴스의 단위인
[math(rm H)]가 이미 나온 바 있어 [math(\rm Hz)]로 약속되었다.
[4]
물론 엄밀하게 보면 시계바늘의 운동으로
시간 지연이 발생하므로 1 Hz보다 아주 근소하게 작다.
[5]
허블 상수가 대표적이다. 차원이 [math({\sf T^{-1}})]이지만, 정의에 주기가 들어가지 않으므로 Hz를 쓸 수 없다.
[6]
현행 국제단위계의 합의에 따르면 [math(n)]은 별도의 단위를 갖지 않으므로 [math(\nu = \dfrac nt)]로 간단하게 나타내어진다.
[7]
역시 현행 국제단위계의 합의에 따르면 [math(n = \dfrac\theta{2\pi{\rm\,rad}})].
[8]
BPM의 M이 Minute(분)을 가리키고 1분이 60초라는 것을 알면 쉽게 이해할 수 있다.