mir.pe (일반/어두운 화면)
최근 수정 시각 : 2023-04-05 01:02:50

분산 분석

이원 배치법에서 넘어옴

파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
실제로 분산분석을 실시하는 기술적 절차에 대한 내용은 통계적 방법/분석/분산분석 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
통계학
Statistics
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
<colbgcolor=#4d4d4d><colcolor=#fff> 수리통계학 기반 실해석학 ( 측도론) · 선형대수학 · 이산수학
확률론 사건 · 가능성 · 확률 변수 · 확률 분포 ( 표본 분포 · 정규 분포 · 이항 분포 · 푸아송 분포 · 카이제곱분포 · t분포 · Z분포 · F-분포 · 결합확률분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙 ( 무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙
통계량 평균 ( 제곱평균제곱근 · 산술 평균 · 기하 평균 · 조화 평균 · 멱평균 · 대수 평균) · 기댓값 · 편차 ( 절대 편차 · 표준 편차) · 분산 ( 공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도
추론통계학 가설 · 변인 · 추정량 · 점추정 · 신뢰 구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도
통계적 방법 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석 ( 요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습 ( 군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타 분석 · 모델링 ( 구조방정식)
기술통계학 ·
자료 시각화
도표 ( 그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 }}}}}}}}}

1. 개요2. 전제 조건3. 요인의 수에 따른 구분
3.1. 일원 배치법3.2. 이원 배치법3.3. 삼원 배치법3.4. 다변량 분산 분석
4. 분석 모형5. 자유도6. 엑셀로 분산 분석 하기7. 기타8. 관련 문서

1. 개요

종속 변인 독립 변인 분석
측정형 분류형 분산 분석
측정형 측정형 회귀 분석
분류형 분류형 교차 분석

/ analysis of variance, ANOVA

분산 분석 또는 변량 분석 종속 변수 분산(variance, 변량)을 설명하는 독립 변수의 유의성을 알아보는 방법 중 하나이다. 영국의 통계학자 Fisher가 농업 생산성 관련 연구를 하려고 만들었다. 3개 이상의 처리 효과 또는 모평균을 비교하는 경우에는 일반적으로 실험을 계획하고 실험을 실시한 후에 얻은 자료를 기초로 하여 분석한다. 통계학 쪽에서는 통칭 아노바(ANOVA)라고 부른다.

분산분석이란 명목척도로 측정된 독립변수 등간척도 또는 비율척도로 측정된 종속변수 사이의 관계를 연구하는 통계 기법이다.

분산 분석의 귀무 가설 H0는 "μ123"같은 것이고, 대립 가설 H1은 "H0가 아니다"와 같은 것이다. 구체적인 예를 들자면, H0는 "약품 세 가지가 효과 차이가 없다"와 같은 것이고, H1은 "적어도 한 가지는[1] 효과 차이가 있다"와 같은 것이다.

세 개 이상의 집단의 평균 차이가 있는가를 검증할 때 쓴다. 예를 들어, 약물 3종류를 투여하고, 약물의 효과에 차이가 있는지 검증할 때 쓸 수 있다. p-값이 0.05보다 작으면 통계적으로 유의미한 차이가 있다고 볼 수 있다. 즉, 약물이 효과가 있다고 볼 수 있다.

크게 연구방법론 측면에서 보면, 회귀분석에 비해 집단비교가 그나마(?) 직관적인 부분이 있다(그건 석사 1학기 때 배우는 t분포고 아노바는 아니야). 다만, 아노바가 집단의 평균의 비교하는 기법인데, 이름이 분산분석(뭔가 이상하다)이라는 점과 같이 난해한 부분들도 꽤 있다. 분산을 이용해 평균을 비교하는 논리에 대한 설명 영상

2. 전제 조건

변량 분석을 이용하여 가설 검증을 하기 위해서 각 변량들에 근거하여 갖추어야 할 전제 조건들이 있다.

3. 요인의 수에 따른 구분

요인의 수에 따라 다음으로 구분할 수 있다.

3.1. 일원 배치법

일원 배치법(one-way layout), 일원 분산 분석(one-way ANOVA)

일원 배치법은 특성값에 대한 한 종류의 변수의 영향을 조사할 때 사용하는 분산 분석법이다. 변수의 각 수준이 처리가 되며 2개의 처리 효과를 비교할 때는 t-검정을, 3개 이상의 처리 효과를 비교할 때는 ANOVA를 사용한다. 처리(treatment)는 각 실험 단위에서 특정한 실험 환경 또는 실험 조건을 가하는 것을 말한다.

3.2. 이원 배치법

이원 배치법(two-way layout), 이원 분산 분석(two-way ANOVA)

3.3. 삼원 배치법

삼원 배치법(three-way layout), 삼원 분산 분석(three-way ANOVA)

3.4. 다변량 분산 분석

다변량 분산 분석 (Multivariate analysis of variance)

4. 분석 모형

5. 자유도

분산 분석의 자유도(degrees of freedom, df)는 다음과 같이 구한다.

자료에 k개의 (column)과 n개의 (row)이 있는 경우 처리 제곱합의 자유도는 k-1이다.
잔차 제곱합의 자유도는 N-k 또는 k(n-1)이다.
총 제곱합의 자유도는 N-1 또는 nk-1이다.

6. 엑셀로 분산 분석 하기

엑셀로 일원배치 분산분석 (One-way ANOVA) 하기

엑셀로 통계 분석하는 방법

7. 기타

8. 관련 문서





[1] 굉장히 중요하다. 분산분석을 할 때 여러개의 변수 중에서 보통 1~2개만 차이가 있는 경우가 많다.