절대부등식 Inequalities |
||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all" |
코시-슈바르츠 부등식 | 산술·기하 평균 부등식 |
[math(\left({a_n})({b_n}\right)\ge\left({a_n}{b_n}\right))] | [math(\frac{a_n+b_n}{n}\ge\sqrt[n]{{a_n}{b_n}})] | |
젠센 부등식 | 영 부등식 | |
[math(\lambda_n f\left(x_n\right)\ge f\left({\lambda_n}{x_n}\right))] | [math(ab \leq \frac{a^p}{p}+\frac{b^q}{q})] | |
횔더 부등식 | 민코프스키 부등식 | |
[math(\|fg\|_1\le\|f\|_p\|g\|_q)] | [math(\|f+g\|_p\le\|f\|_p+\|g\|_p)] | |
마르코프 부등식 | 체비쇼프 부등식 | |
[math(\frac{E(X)}k\ge{\rm P}(X\ge k))] | [math(P(|X-\mu|<k\sigma)\geq1-\frac1{k^2})] | |
슈르 부등식 | ||
[math(a\left(x-y\right)\left(x-z\right)+b\left(y-z\right)\left(y-x\right)+c\left(z-x\right)\left(z-y\right)\geq0)] | ||
합 기호는 아인슈타인 합 규약을 일부 사용해 단축하였다. | }}}}}}}}} |
통계학 Statistics |
|||
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-5px -1px -11px" |
<colbgcolor=#4d4d4d><colcolor=#fff> 수리통계학 | 기반 | 실해석학 ( 측도론) · 선형대수학 · 이산수학 |
확률론 | 사건 · 가능성 · 확률 변수 · 확률 분포 ( 표본 분포 · 정규 분포 · 이항 분포 · 푸아송 분포 · 카이제곱분포 · t분포 · Z분포 · F-분포 · 결합확률분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙 ( 무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙 | ||
통계량 | 평균 ( 제곱평균제곱근 · 산술 평균 · 기하 평균 · 조화 평균 · 멱평균 · 대수 평균) · 기댓값 · 편차 ( 절대 편차 · 표준 편차) · 분산 ( 공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도 | ||
추론통계학 | 가설 · 변인 · 추정량 · 점추정 · 신뢰 구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도 | ||
통계적 방법 | 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석 ( 요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습 ( 군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타 분석 · 모델링 ( 구조방정식) | ||
기술통계학 · 자료 시각화 |
도표 ( 그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 | }}}}}}}}} |
Markov inequality, Markov 不 等 式
1. 개요
확률론의 절대부등식의 하나이다. 이름의 유래는 러시아의 수학자 안드레이 마르코프(Markov, 1856~1922)이다.
음이 아닌 확률변수 [math(X)]와 양수 [math(c)]에 대하여 [math(\dfrac{\mathbb{E}[X]}{c} \geq \mathbb{P}(X \ge c))]
|
다음과 같이 증명한다.
[math(
\mathbb{E}[X] \ge \mathbb{E}[X \mathbb{1}_{\{X \ge c\}}] \ge c \cdot \mathbb{P}(X \ge c)
)]이 부등식은 체비쇼프 부등식을 증명하는 데에도 도움이 된다.