----
같은 것을 포함한 순열에 관한 문제이다.
[math(a, a, a, b, b, c)]를 일렬로 나열하는 가짓수는 [math(\dfrac{6!}{3!×2!})]이므로 [math(\dfrac{720}{12}=60)]이다.
5번
[해설]
----
6번
[해설]
----
7번
[해설]
----
8번
[해설]
----
원순열에 관한 문제다.
1학년 학생 2명, 2학년 학생 2명, 3학년 학생 3명을 원탁에 앉게 하되, 1학년 학생끼리 이웃하고 2학년 학생끼리 이웃하게 하는 방법은 1학년 학생 2명을 한 사람으로 보고 2학년 학생도 한명으로 보고 총 5명을 원탁에 배열하고 1학년 학생끼리 자리 바꾸고 2학년 학생끼리도 자리 바꾸면 된다.
[math({(5-1)!×2!×2!}=24×2×2=96)]가지이다.
9번
[해설]
----
[math(f(x)=2log_{1 \over 2}(x+k))]가 닫힌 구간 [math(\left[0, 12\right])] 즉 [math(0 \le x \le 12)]에서 최댓값 [math(-4)], 최솟값 [math(m)]을 가질 때, [math(k+m)]의 값을 구하는 방법은 아래와 같다.
이 함수의 밑이 0보다 크고 1보다 작으므로 감소함수인 것을 이용해 [math(x=0)]일 때 최댓값 [math(-4)]를 가지니, [math(x=0)]을 대입하면
----
[math((1+x)^4)]을 전개해 [math(x^2)]의 계수를 구하려면 [math(1)]을 2번 뽑고 [math(x)]를 두번 뽑아야 한다. [math(_{4}\mathrm{C}_{2}=6)]이고, [math(x)]를 두번 택해야 하므로 [math(x^2)]을 곱해주면 된다. 답은 [math(6)]이다.
23번
[해설]
----
사인법칙을 이용하는 문제다.
[math(\dfrac {b}{\sin B}=2R)]을 이용하면 [math(\sin B=\dfrac {7}{10}, R=15)]이므로 [math( {b}÷\dfrac {7}{10}=2×15)] \, [math(b=30×\dfrac {7}{10}=21)]이다.
24번
[해설]
----
[math(a_1=9\,\ a_2=3)]이고, [math(a_{n+2}=a_{n+1}-a_n)]을 만족시킬때, [math(\left\vert a_k \right\vert=3)]을 만족시키는 100이하의 자연수 [math(k)]의 개수를 구하는 방법은 먼저 규칙을 찾는다.