mir.pe (일반/어두운 화면)
최근 수정 시각 : 2022-07-18 17:56:54

에어리 함수

특수함수
Special Functions
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
적분 오차함수(error function)( 가우스 함수 · 가우스 적분 함수) · 베타 함수( 불완전 베타 함수) · 감마 함수( 불완전 감마 함수 · 로그 감마 함수) · 타원 적분 · 야코비 타원 함수 · 지수 적분 함수 · 로그 적분 함수 · 삼각 적분 함수 · 쌍곡선 적분 함수 · 프레넬 적분 함수 · 구데르만 함수
미분방정식 르장드르 함수* · 구면 조화 함수 · 베셀 함수 · 에르미트 함수 · 라게르 함수 · 에어리 함수
역함수 브링 근호 · 람베르트 [math(W)] 함수 · 역삼각함수
급수 제타 함수 · 세타 함수 · 초기하함수 · 폴리로그함수 · 바이어슈트라스 타원 함수
정수론 소수 계량 함수 · 소인수 계량 함수 · 뫼비우스 함수 · 최대공약수 · 최소공배수 · 약수 함수 · 오일러 파이 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 바쁜 비버 함수
기타 헤비사이드 계단 함수 · 부호 함수 · 테트레이션( 무한 지수 탑 함수) · 집합 판별 함수 · 바닥함수 / 천장함수 · 허수지수함수 · 혹 함수
* 특수함수가 아니라 특정 조건을 만족시키는 다항함수이지만, 편의상 이곳에 기술했다. }}}}}}}}}}}}

삼각함수 · 쌍곡선함수
Trigonometric Functions · Hyperbolic Functions
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
기본 개념 삼각형 · 삼각비 · · 쌍곡선
삼각함수 사인곡선( 위상수학자의 사인곡선) · 역함수 · 도함수 · 역도함수 · 관련 함수 · 삼각함수의 덧셈정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리 · 오일러 공식 · 푸리에 해석( 푸리에 변환) · 삼각 적분 함수 · 구데르만 함수 · 프레넬 적분 함수 · 디리클레 함수 · 볼테라 함수 · 에어리 함수 · 야코비 타원 함수
쌍곡선함수 현수선 · 쌍곡선 적분 함수 · 구데르만 함수 }}}}}}}}}


[math(\displaystyle \frac{{\rm d}^2y}{{\rm d}x^2}-xy=0 )]

미분방정식의 해 [math(y)]는 두 선형독립의 해 [math(\mathrm{Ai}(x))], [math(\mathrm{Bi}(x))]의 선형 결합으로 쓸 수 있는데, 이때 두 선형독립의 해를 에어리 함수(Airy function)라 하며 아래와 같이 나타낼 수 있다. [math(\exp{x} = e^{x})]이다.

[math(\displaystyle \begin{aligned}
\mathrm{Ai}(x) &= \frac1{\pi} \int_0^{\infty} \cos \biggl( \frac{t^3}3 +tx \biggr) {\rm d}t \\
\mathrm{Bi}(x) &= \frac1{\pi} \int_0^{\infty} \biggl( \exp \biggl( -\frac{t^3}{3} +tx \biggr) + \sin \biggl( \frac{t^3}3 +tx \biggr) \!\biggr) {\rm d}t \end{aligned} )]

다음은 에어리 함수의 그래프를 나타낸 것이다.

파일:에어리함수_그래프.png
에어리 함수는 아래와 같은 특징이 있다.
이 함수는 양자역학에서 WKB 근사법을 다룰 때 등장한다.


[1] 사실 [math(x >0)] 영역에서도 0에 매우 근접할 뿐이지 0은 아니다. [A] [math(\Gamma)]는 감마 함수이다. [A] [math(\Gamma)]는 감마 함수이다.